|
|
on the cofiniteness of local cohomology modules
|
|
|
|
|
نویسنده
|
roshan-shekalgourabi hajar
|
منبع
|
journal of algebraic structures and their applications - 2022 - دوره : 9 - شماره : 1 - صفحه:81 -92
|
چکیده
|
Let r be a commutative noetherian ring with identity, i be an ideal of r and m be an r-module such that extʲ (r/i, m ) is finitely generated for all j. we prove that if dim hⁱ(m ) ≤ 1 for all i, then for any i ≥ 0 and for any submodule n of hⁱ(m ) that is either i-cofinite or minimax, the r-module hⁱ(m )/n is i-cofinite. this generalizes the main result of bahmanpour and naghipour [8, theorem 2.6]. as a consequence, the bass numbers and betti numbers of hⁱ(m ) are finite for all i ≥ 0. also, among other things, we show that if either dim r/i ≤ 2 or dim m ≤ 2, then for each finitely generated r-module n , the r-module extʲ (n, hⁱ(m )) is i-weakly cofinite, for all i ≥ 0 and j ≥ 0. this generalizes [1, r i corollary 2.8].
|
کلیدواژه
|
local cohomology modules ,i-cofinite modules ,minimax modules ,weakly laskerian modules ,krull dimension ,bass numbers.
|
آدرس
|
arak university of technology, department of basic sciences, iran
|
پست الکترونیکی
|
hrsmath@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|