|
|
تخمین نفوذپذیری خاک با استفاده از مولفه های مختلف فرسایش در کاربری های مختلف
|
|
|
|
|
نویسنده
|
سعیدیان حمزه ,مرادی حمید رضا ,صالح پور ابدال
|
منبع
|
هيدروژئومورفولوژي - 1400 - دوره : 8 - شماره : 27 - صفحه:121 -105
|
چکیده
|
تخمین نفوذپذیری خاک به کمک مولفههای مختلف فرسایش میتواند یک روش برآوردی مفید برای تعیین میزان نفوذپذیری خاک در کوتاهترین زمان و با صرف کمترین هزینه باشد. در این پژوهش به منظور تعیین تخمین میزان نفوذپذیری خاک با استفاده از مولفههای مختلف فرسایش در کاربریهای مختلف نهشتههای سازند گچساران، بخشی از حوزه آبریزکوه گچ شهرستان ایذه با مساحت 1202 هکتار انتخاب گردید. در این تحقیق تعیین رابطه بین میزان نفوذپذیری خاک و مولفههای مختلف فرسایش مانند میزان رسوب و مقدار رواناب و زمان شروع آستانه رواناب و رسوب در کاربریهای مختلف سازند گچساران به کمک رگرسیون چند متغیره انجام گرفت. سپس نمونهبرداری مولفههای مختلف فرسایش در 6 نقطه و با 3 تکرار و در شدتهای مختلف بارش 75/0، 1 و 25/1 میلیمتر در دقیقه در سه کاربری مرتع، منطقه مسکونی و اراضی کشاورزی به کمک دستگاه شبیه ساز باران انجام شد. به منظور انجام تحلیلهای آماری از نرم افزار spss و excelاستفاده گردید. نتایج نشان داد که به طور کلی بیشترین تاثیرگذاری مثبت و منفی مولفههای مختلف فرسایش در تخمین میزان نفوذپذیری خاک مربوط به میزان رسوب و شروع آستانه رواناب و رسوب در هر سه کاربری یاد شده و در سه شدت بارش 75/0، 1 و 25/1 میلی متر دقیقه میباشد و در این میان نقش میزان رسوب در تخمین میزان نفوذپذیری خاک نسبت به آستانه رواناب و رسوب اندکی بیشتر نشان داده شد و میزان رواناب در تخمین میزان نفوذپذیری خاک در این روش نقشی نداشته است.
|
کلیدواژه
|
نفوذپذیری خاک، رواناب، رسوب، حوزه آبریز کوه گچ ایذه
|
آدرس
|
سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی کرمان, بخش تحقیقات حافظت خاک و آبخیزداری, ایران, دانشگاه تربیت مدرس, دانشکده منابع طبیعی و علوم دریایی, ایران, دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران, ایران. شرکت توسعه نیشکر اهواز, ایران
|
|
|
|
|
|
|
|
|
|
|
Estimation of Soil infiltration using different erosion components in different land uses
|
|
|
Authors
|
saeediyan hamzeh ,Moradi Hamid reza ,salehpoor abdal
|
Abstract
|
1IntroductionSoil infiltration situation indicates soil behavior against water reaching the soil surface. This phenomenon determines the amount of both the water reaching the soil surface and rainfall losses. Soil infiltration of a basin has unique parameters based on its climate, soil conditions, and buildings. Soils are a set of discontinuous particles among which pores exist so that water can move from a point with more energy to a point with less energy; this property is called the passage of water through continuous pores. Gachsaran marl formation has a thickness of about 1600 m and consists of salt, anhydrite, colorful lime marl, and some shale from a lithology point of view. The age of this formation is lower Miocene (Ahmadi, 1999: 714). Estimation of soil infiltration using various erosion components can be a useful method to determine soil infiltration in the shortest time and at the lowest cost.2MethodologyIn this study, soil infiltration was estimated using erosion different components in different land uses in deposits of Gachsaran formation by selecting a part of the Kuhe Gach watershed of Izeh city with an area of 1202 hectares. The relationship between soil infiltration and erosion different components, such as sediment rate, runoff rate, and runoff and erosion threshold, in different land uses of Gachsaran formation was determined by the multivariate regression. Then, different erosion components were sampled at six points with three replicates and different rainfall intensities of 0.75, 1, and 1.25 mm/min in three land uses of rangeland, residential area, and agricultural land using a rainfall simulator. SPSS and Excel software was used for statistical analysis. A portable Kamphorst rainfall simulator used in this study has a plot size of 625 cm2, which determines the characteristics of soil, erosion, and water infiltration, and is suitable for soil research. It is used as a standard method to determine the soil infiltration of surface deposits in the field. The experimental plot area was selected 625 cm2 with a smooth gradient. The preparation of the testing area was followed by installing and setting the rainfall simulator and then starting a chronometer upon observing the precipitation on the screen. The amount of plot infiltration was determined at 10min intervals (Kamphorst, 1987: 407).3Results and DiscussionThe estimation of soil infiltration was acceptable and appropriate in some models in this study, which have a lower regression coefficient. Therefore, it is not possible to make appropriate comments about the estimation of the models only using regression coefficients and other statistical coefficients nor the significance levels of observational and estimated data as well as the minimum square mean of errors (MMSEs); in some cases, the MMSEs are not sufficient and require more studies (Jain and Kumar, 2006: 272). Despite scientific advances and improvement of measuring equipment, regression models are still used by researchers in different fields due to simplicity.4Conclusions The results showed that the most positive and negative effects of different erosion components on estimating soil infiltration were related to sediment rate, runoff, and erosion threshold in all three mentioned land uses in three precipitation intensities (0.75, 1, and 1.25 mm min). Meanwhile, the role of sediment rate in estimating soil infiltration was slightly higher than runoff, and erosion threshold and runoff rate had no role in estimating soil infiltration in this method due to a high correlation of data.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|