|
|
مطالعه وضعیت بهرهوری، کارایی و نفوذ علمی پژوهشگران در حوزه دادههای پیوندی
|
|
|
|
|
نویسنده
|
قربانی بوساری رقیه ,قیاسی میترا ,رضوی علی اصغر
|
منبع
|
پژوهش نامه علم سنجي - 1402 - دوره : 9 - شماره : 2 - صفحه:45 -74
|
چکیده
|
هدف: سنجش بهرهوری، کارایی و نفوذ علمی پژوهشگران حوزه دادههای پیوندی است.روششناسی: پژوهش حاضر از نظر هدف کاربردی است که با تکنیکهای رایج در مطالعات علمسنجی و به روش همنویسندگی و تحلیل شبکه انجام شد. جامعه پژوهش شامل مقالههای حوزه دادههای پیوندی است که در وبگاه علوم طی بازه 1983 تا 2019 نمایه شده است.یافتهها: bizer c” و berners-lee t از لحاظ بهرهوری و کارایی و شاخصهای نفوذ اجتماعی و اندیشهای اثرگذارترین پژوهشگران این حوزه هستند. در شبکه همنویسندگی، auer s و klyne g بالاترین مرکزیت رتبه، fellegi i و zhang y بالاترین مرکزیت نزدیکی، و fellegi i” و rubin d دارای بالاترین مرکزیت بینابینی بودند. پژوهشگران با کارایی بالا از مرکزیت بهتر و با بهرهوری بالا از مرکزیت رتبه و بینابینی خوبی برخوردارند. تاثیر نفوذ اجتماعی بر نفوذ اندیشهای و انتشاراتی، و تاثیر نفوذ انتشاراتی بر اندیشهای مثبت ارزیابی شد.نتیجهگیری: وضعیت مطلوب پژوهشگران از نظر بهرهوری و کارایی و نمرات بالای آنها در شاخصهای مرکزیت رتبه و بینابینی میتواند نشاندهنده نفوذ موثر علمی آنها در این حوزه باشد. همچنین تاثیر مثبت و معنادار روابط سهگانه مدل نفوذ علمی نیز این مسئله را تایید میکند.
|
کلیدواژه
|
بهرهوری، دادههای پیوندی، کارایی، مدل نفوذ علمی
|
آدرس
|
دانشگاه آزاد اسلامی واحد بابل, گروه علم اطلاعات و دانششناسی, ایران, دانشگاه آزاد اسلامی واحد بابل, گروه علم اطلاعات و دانششناسی, ایران, دانشگاه آزاد اسلامی واحد بابل, گروه علم اطلاعات و دانششناسی, ایران
|
پست الکترونیکی
|
aa-razavi@yahoo.com
|
|
|
|
|
|
|
|
|
studying the status of productivity, efficiency, and scientific influence of researchers in the field of linked data
|
|
|
Authors
|
ghorbani bousari roghayeh ,ghiasi mitra ,razavi aliasghar
|
Abstract
|
purpose: linked data was developed and introduced as the best practice for publishing and linking structured data on the web. in studies related to the scientific collaboration network, which is defined by co-authorship relationships, social network analysis (sna) is applied. identifying influential researchers in co-authorship networks across different scientific fields can be considered one of the goals of scientometric studies. the purpose of the current research is to determine the productivity and efficiency of researchers in the field of linked data. additionally, it aims to identify and analyze the most influential researchers in linked data using the scholarly influence model. methodology: the current research is an applied study and has been conducted using common techniques in scientometrics, specifically co-authorship and network analysis methods. to obtain the primary data, the keyword linked data was searched in the web of science database, which contains 4612 records from 1983 to 2019. the data was saved in plaintext format and then processed by bibexcel software. based on co-authorship, the number of unique researchers was determined to be 48,643. the names of the researchers were transferred from bibexcel to excel software and sorted alphabetically. then, they were edited, modified, and unified into preferred names. in the following, bradford’s law was applied to determine the sample size with a cutoff of 38 in order to facilitate easier analysis in the co-authorship network. the sample size was determined to be 174 researchers. bibexcel has been used to calculate the productivity (number of articles), efficiency (number of citations), and h-index of the researchers. after creating a co-authorship matrix of researchers in bibexcel, it was converted into a correlation matrix using ucinet in order to calculate the degree, betweenness, and closeness centrality. in addition, the g-index and hc-index of 174 researchers were manually calculated using excel software. next, the relationship between productivity and efficiency, as well as the impact of social and environmental influences on ideational influence, were investigated using lisrel software. findings: the findings showed that bizer c. and berners-lee t. are considered to be the most influential researchers in the field of linked data, with the highest productivity and efficiency. in terms of co-authorship, auer s and klyne g have the highest degree centrality. in terms of closeness centrality, fellegi i and zhang y have the highest scores, while fellegi i and rubin d have the highest scores in betweenness centrality. regarding the hypotheses, there is a significant relationship between the productivity and efficiency of researchers in the field of linked data. also, the findings showed that higher productivity is associated with higher betweenness and degree centrality. however, there is no significant relationship between closeness centrality score. specifically, bizer c, berners-lee t, hogan a, and auer s have the highest scores in the indicators of social and ideational influences. furthermore, it was found that social influence has a positive effect on venue and ideational influence, meaning that researchers with higher social influence also have higher venue and ideational influence. in addition, social influence has a positive effect on ideational influence, meaning that researchers with higher social influence also possess higher ideational influence. conclusion: the favorable status of researchers in terms of productivity and efficiency, as well as their high scores in the indicators of degree and betweenness centrality in the co-authorship network, can indicate their significant scientific influence in this field. this finding confirms the positive and significant impact of triple relationships in the scholarly influence model. generally, the results can provide a deeper understanding of the quantitative and qualitative status of scientific publications and leading researchers in this field. using a combination of productivity and efficiency indicators, along with the components of the scholarly influence model, can help identify top researchers in each scientific field.
|
|
|
|
|
|
|
|
|
|
|
|
|