>
Fa   |   Ar   |   En
   bernoulli wavelets method for solution of fractional differential equations in a large interval  
   
نویسنده keshavarz e ,ordokhani y
منبع پژوهش هاي رياضي - 1395 - دوره : 2 - شماره : 1 - صفحه:17 -32
چکیده    In this paper, bernoulli wavelets are presented for solving (approximately) fractional differential equations in a large interval. bernoulli wavelets operational matrix of fractional order integration is derived and utilized to reduce the fractional differential equations to system of algebraic equations. numerical examples are carried out for various types of problems, including fractional van der pol and bagley-torvik equations for the application of the method. illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method.
کلیدواژه wavelet ,fractional calculus ,differential equations ,block pulse function ,van der pol equation ,bagley-torvik equation ,caputo derivative ,operational matrix ,numerical solution
آدرس alzahra university, faculty of mathematical sciences, ایران, alzahra university, faculty of mathematical sciences, ایران
پست الکترونیکی ordokhani@alzahra.ac.ir
 
   روش موجک برنولی برای جواب معادلات دیفرانسیل کسری روی بازه بزرگ  
   
Authors کشاورز الهام ,اردوخانی یداله
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved