|
|
عملگرهای یکنوای تعمیم یافته و رویکرد قطبیِ مجموعه های یکنوای تعمیمیافته
|
|
|
|
|
نویسنده
|
علیزاده محمد حسین
|
منبع
|
پژوهش هاي رياضي - 1401 - دوره : 8 - شماره : 4 - صفحه:151 -163
|
چکیده
|
ابتدا نامساوی فنچل- موراِ به توابع σ-محدب تعمیم داده می شود و سپس با استفاده از تابع فیتزپاتریک تعمیم یافته، تظریفی برای نامساوی فنشل- موراِ تعمیم یافته ارائه می شود. در ادامه، قطبی مجموعه های σ -یکنوا معرفی شده و نتایج مرتبط با آن مورد مطالعه قرار می گیرد.
|
کلیدواژه
|
عملگرهای یکنوا و -یکنوا، نامساوی فنچل- موراِ، تابع فیتزپاتریک، قطبی مجموعه های یکنوا و - یکنوا
|
آدرس
|
دانشگاه تحصیلات تکمیلی علوم پایه زنجان, دانشکده ریاضی, ایران
|
پست الکترونیکی
|
m.alizadeh@iasbs.ac.ir
|
|
|
|
|
|
|
|
|
generalized monotone operators and polarity approach to generalized monotone sets
|
|
|
Authors
|
alizadeh mohammad hossein
|
Abstract
|
introductionmany suppose that is a banach space with topological dual space we will denote by the duality pairing between x and . for , we denote by the boundary points of ω and by the interior of ω. also we will denote by the real nonnegative numbers. let be a set-valued map from to . the domain and graph of are, respectively, defined bywe recall that a set valued operator is monotone if for all and for two multivalued operators and we write ifis an extension of , i.e., . a monotone operator is called maximal monotone if it has no monotone extension other than itself. in 1988, the fitzpatrick function of a monotone operator was introduced by fitzpatrick. the fitzpatrick function makes a bridge between the results of convex functions and results on maximal monotone operators. for a monotone operator , its fitzpatrick function is defined by it is a convex and norm to weak lower semicontinuous and function. let be an extended real-valued function. its effective domain is defined by the function is called proper if . let be a proper function. the subdifferential (in the sense of convex analysis) of at is defined by given a proper function and a map , then is called -convex if for all and for all given an operator and a map . then is called -monotone if for all and we have also is called maximal -monotone if it has no -monotone extension other than itself. we recall for a proper function the -subdifferential of at is defined by and if . main results the definition we use for the fitzpatrick function is the same as for monotone operators.assume that is a proper -convex function its conjugate is defined by first we have the following refinement of the fenchel-moreau inequality: where is the indicator function and .also we have the following refinement, when is a proper, -convex and lower semicontinuous function and is a maximal -monotone operator: moreover, we approach generalized monotonicity from the point of view of the classical concept of polarity. besides, we introduce and study the notion of generalized monotone polar of a set a. moreover, we find some equivalent relations between polarity and maximal generalized monotonicity.
|
Keywords
|
monotone and generalized monotone operators ,fenchel- moreau inequality ,fitzpatrick function ,monotone and generalized monotone polarsets
|
|
|
|
|
|
|
|
|
|
|