>
Fa   |   Ar   |   En
   یکنواخت جداسازی در فضای توابع لیپ‌شیتس کوچک برداری مقدار  
   
نویسنده گل ‌بهاران آذین
منبع پژوهش هاي رياضي - 1401 - دوره : 8 - شماره : 1 - صفحه:119 -126
چکیده    فرض کنید (x,d) یک فضای متریک فشرده و e یک فضای باناخ است. در این مقاله خاصیت یکنواخت جداسازی نقاط  توسط فضای lip0(x,e) مورد مطالعه قرار می‌گیرد.
کلیدواژه فضای باناخ، فضای توابع لیپ‌شیتس، یکنواخت جداسازی
آدرس دانشگاه خوارزمی, دانشکده علوم ریاضی و کامپیوتر, گروه ریاضی, ایران
پست الکترونیکی golbaharan@khu.ac.ir
 
   uniformly separation property in vector-valued littlelipschitz space  
   
Authors golbaharan azin
Abstract    suppose that (𝑋, 𝑑) be a compact metric space with a distinguished point𝑒 and𝐸 be a banach space.collection of 𝐸 −valued function 𝑓 on 𝑋 such thatℒ(𝑓) = sup,𝑥≠𝑦𝑥,𝑦∈𝑋‖𝑓(𝑥) − 𝑓(𝑦)‖𝑑(𝑥, 𝑦)< ∞ , 𝑓(𝑒) = 0is called vector-valued lipschitz space and denoted by 𝐿𝑖𝑝0 (𝑋, 𝐸). the space𝐿𝑖𝑝0(𝑋, 𝐸) with respect to the point wise operations on functions and the normℒ(. ) is a banach space that separates points of 𝑋. the subset consists of allfunctions such thatlim𝑑(𝑥,𝑦)→0‖𝑓(𝑥) − 𝑓(𝑦)‖𝑑(𝑥, 𝑦)= 0is a closed subspace of 𝐿𝑖𝑝0 (𝑋, 𝐸), denoted by 𝑙𝑖𝑝0(𝑋, 𝐸) and called littlevector-valued lipschitz space. in particular when banach space 𝐸 coincideswith scaler field, 𝐿𝑖𝑝0(𝑋, 𝐸) and 𝑙𝑖𝑝0(𝑋, 𝐸) is denoted by 𝐿𝑖𝑝0(𝑋) and 𝑙𝑖𝑝0(𝑋)respectively.definition. the space 𝑙𝑖𝑝0(𝑋) separates points of 𝑋 uniformly when there exists𝐶 > 1 such that for each distinct pair point 𝑥, 𝑦 ∈ 𝑋 there is 𝑓 ∈ 𝑙𝑖𝑝0(𝑋, 𝐸) with𝑓(𝑦) = 0, ‖𝑓(𝑥)‖ = 𝑑(𝑥, 𝑦), ℒ(𝑓) ≤ 𝐶.definition.the banach space 𝐸 has approximation property if for each ε > 0and compact subset 𝐾 of 𝐸 there exists a finite dimensional bounded operator𝑇: 𝐸 → 𝐸 such that sup𝑥∈𝐾‖𝑇𝑥 − 𝑥‖ < 𝜀.results and discussionin this paper we deal with the uniform separation property of a metric space 𝑋by the little vector-valued lipschitz space, namely 𝑙𝑖𝑝0(𝑋, 𝐸).conclusionwe show that if 𝑙𝑖𝑝0 (𝑋) has the approximation property and 𝐸 be a topologicaldual of some banach space, then there exists a compact metric space 𝑌 with adistinguished point and a non-expansive function 𝜋: 𝑋 → 𝑌 such that 𝑙𝑖𝑝0(𝑌, 𝐸)separates the point of 𝑌 uniformly and 𝐶𝜋, the composition operator induced by𝜋, is a surjective linear isometry from 𝑙𝑖𝑝0(𝑌, 𝐸) to 𝑙𝑖𝑝0(𝑋, 𝐸).
Keywords banach space; lipschitz space; uniform separationproperty
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved