>
Fa   |   Ar   |   En
   نگاشت های خطی پیوسته روی جبرهای فون-نویمان با مقادیر مشابهپادمشتق ها در عناصر متعامد  
   
نویسنده قهرمانی هوگر ,فدایی بهروز ,فلاحی کمال
منبع پژوهش هاي رياضي - 1401 - دوره : 8 - شماره : 1 - صفحه:224 -234
چکیده    فرض کنید a جبری فون-نویمان و δ: a→a نگاشت خطی پیوسته باشد. همچنین فرض کنید δ در یکی از شرایط زیر صدق کند:  xy=0⟹yδx+δyx=0,         (x , y∈a);  xy*=0⟹y*δx+δy*x=0,      x , y∈a;x*y=0⟹yδx*+δyx*=0,     (x , y∈a).در این مقاله در هر یک از حالت‌های ذکر شده ساختار δ را مشخصه‌سازی می‌کنیم. 
کلیدواژه پادمشتق، جبرهای فون-نویمان، عناصر متعامد، مرکز جبر
آدرس دانشگاه کردستان, گروه ریاضی, ایران, دانشگاه کردستان, گروه ر یاضی, ایران, دانشگاه پیام نور مرکز تهران, دانشکده ریاضی, ایران
پست الکترونیکی fallahi1361@gmail.com
 
   linear maps on von-neumann algebras behaving like anti-derivations at orthogonal elements  
   
Authors gharamani hoger ,fadaee behrooz ,fallahi kamal
Abstract    introduction through this paper all algebras and linear spaces are on the complex field c. let a be an algebra and m be an a-bimodule. the linear mapping d:a→m is called an anti-derivation if dxy=ydx+dyx (x,y∈a). also, d is called a derivation if dxy=xdy+dxy (x,y∈a). the linear mapping δ:a→m is a jordan derivation if dx2=xdx+dxx (x∈a). any anti-derivation and derivation is a jordan derivation, but the converse is not necessarily true. jordan in [1] has shown that every continuous jordan derivation on c*-algebra a into any banach a-bimodule is a derivation. derivations and anti-derivations are important classes of mappings on algebras which have been used to study of structure of algebras. we refer to [2] and the references there in. bersar studied in [3] additive maps on prime ring contain a non-trivial idempotent satisfying x,y∈a,     xy=0  ⟹δxy+xδy=0 .later, many studies have been done in this case and different results were obtained, for instance, see [4, 5, 6, 7, 8, 9] and the references therein. recently [10, 11, 12, 13], the problem of characterizing continuous linear maps behaving like derivations or anti-derivations at orthogonal elements for several types of orthogonality conditions on *-algebras have been studied. in this paper we study the above problems on von neumann algebra.material and methods in this article, the subsequent conditions on a continuous linear map δ:a→a where a is a *-algebra has been considered:  xy*=0⟹xδy*+δxy*=0,      (x , y∈a);  xy*=0⟹x*δy+xδy*=0,        x , y∈a.we consider following conditions on continuous linear map on von neumann algebras:  xy=0⟹yδx+δyx=0,      (x , y∈a);  xy*=0⟹y*δx+δy*x=0,     (x , y∈a);  x*y=0⟹yδx*+δyx*=0,       (x , y∈a).over methods are based on structure of von neumann algebras and the fact that every derivation on von neumann algebras is inner. main resultsthe followings are the main results of our paper.theorem. let a be a von neumann algebra and δ:a→a is a continuous linear map. then δ satisfies y δx+δyx=0 for all x , y∈a with xy=0 if only if there are elements μ,ν∈a such that δx=x μ-νx, where μ-ν∈z (a) and [x,y,μ]+2x,yμ-ν=0 for all x , y∈a.theorem. let a be a von neumann algebra and δ:a→a is a continuous linear map. then δ satisfies y*δx+δy*x=0 for all x , y∈a with xy*=0 if only if there are elements μ,ν∈a such that δx=νx-μx, where reμ∈z (a) and x,y,μ+ν-μ*x,y+x,yν-μ=0,for all x , y∈a.theorem. let a be a von neumann algebra and δ:a→a is a continuous linear map. then δ satisfies δyx*+yδx*=0 for all x , y∈a with x*y=0 if only if there are elements μ,ν∈a such that δx=xμ-νx, where reμ∈z (a) and x,y,μ+x,yμ-ν*+μ-νx,y=0,for all x , y∈a.conclusionlet a be a von neumann algebra and δ:a→a be a continuous linear map. let δ be anti-derivation at orthogonal elements. we characterized the structure of δ according to the  )generalized) inner derivation. we guess that the results obtained can also be proved on standard operator algebras.
Keywords anti-derivations ,orthogonal elements ,von-neumann algebras
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved