>
Fa   |   Ar   |   En
   مجتمع های ساده گون تجزیه پذیر راسی نظیر به گراف های مسیر  
   
نویسنده مرادی سمیه
منبع پژوهش هاي رياضي - 1398 - دوره : 5 - شماره : 1 - صفحه:79 -84
چکیده    شناخت مجتمع های ساده گون تجزیه پذیر راسی به واسطۀ خواص جبری و توپولوژیکی ای که دارند از جمله مسائل مهم در جبر جابه‌جایی ترکیبیاتی به‌شمار می رود. در این راستا معرفی خانواده هایی از مجتمع های ساده گون با این خاصیت بسیار مورد توجه است. در این مقاله مجتمع ساده گون استنلی-ریزنر نظیر به ایده آل t-خوشه ای گراف های مکمل مسیر بررسی شده است. برای این خانواده از مجتمع های ساده گون، مجموعۀ رویه های آن‌ها را به‌طور دقیق مشخص کرده و با استفاده از این موضوع نشان می دهیم این دسته از مجتمع های ساده گون دارای خاصیت تجزیه پذیری راسی هستند. در واقع با توجه به محض بودن آن ها ثابت می شود که حلقۀ استنلی-ریزنر آن‌ها دارای خاصیت کوهن-مکالی است. از آن‌جاکه 2-خوشه ایده آل‌ها همان ایده آل های یالی گراف ها هستند، این دسته از مجتمع های ساده گون شامل خانوادۀ مجتمع های ساده گون مستقل های گراف مکمل مسیر هستند. در پایان به‌عنوان نتیجه نشان می دهیم که ایده آل -مستقل‌های گراف مکمل مسیر یک ایده آل جداشوندۀ راسی است و جداساز بتی آن را ارائه می دهیم.
کلیدواژه ایده‌آل t-خوشه ای، تجزیه پذیری راسی، گراف مسیر، مجتمع ساده گون
آدرس دانشگاه ایلام, دانشکدۀ علوم پایه, گروه ریاضی, ایران
پست الکترونیکی somayeh.moradi1@gmail.com
 
   vertex decomposable simplicial complexes associated to path graphs  
   
Authors moradi somayeh
Abstract    introductionvertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the stanley-reisner ring of the simplicial complex. this notion was first defined by provan and billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . later bjorner and wachs extended this concept to non-pure complexes. being defined in an inductive way, vertex decomposable simplicial complexes are considered as a well behaved class of complexes and has been studied in many research papers. because of their interesting algebraic and topological properties, giving a characterization for this class of complexes is of great importance and is one of the main problems in combinatorial commutative algebra. in this regard obtaining families of simplicial complexes with this property is of great interest. in this paper we present a new family of vertex decomposable simplicial complexes, which is associated to the t-clique ideal of the complement of path graphs. the t-clique ideal is a natural generalization of the concept of the edge ideal of a graph. for a graph g, a complete subgraph of g with t vertices is called a t-clique of g. the ideal  generated by the monomials  of degree t such that the induced subgraph of g on the set  is a complete graph, is called the t-clique ideal of g. we consider the stanley- reisner simplicial complex of the ideal , where  is a path graph of order n.  for such a simplicial complex , we obtain the set of facets of  and using this characterization we show that every such simplicial complex is vertex decomposable, whose shedding vertex is an endpoint of the path graph. indeed, any simplicial complex in this family is cohen-macaulay, since it is pure. since edge ideals of graphs are in fact 2-clique ideals, this family of simplicial complexes contains the independence complexes of complement of path graphs. finally, as a consequence it is shown that the t-independence ideal of the complement of a path graph is vertex splittable and its betti splitting is presentedmaterial and methodsto prove the vertex decomposability of , first we characterize the set of facets of  . this helps us to find a shedding vertex for this simplicial complex and then by an inductive approach the vertex decomposability has been proved.results and discussionfor positive integers  and , we show that a subset f of the vertex set of  is a facet of  if and only if  and every component of the induced subgraph  is a path graph of even order. using this characterization, it is shown that any endpoint of the path graph is a shedding vertex of  and   is vertex decomposable. moreover, it is proved that the ideal  has a betti splitting.conclusionthe following conclusions were drawn from this research.a characterization for the set of facets of the simplicial complex  is presented.the simplicial complex  is vertex decomposable for any positive integers  and .the ideal  has a betti splitting for any any positive integers  and ../files/site1/files/51/%d9%85%d8%b1%d8%a7%d8%af%db%8c.pdf
Keywords t-clique ideal ,vertex decomposability ,path graph ,simplicial complex
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved