>
Fa   |   Ar   |   En
   مطالعه و دسته‌بندی برخی از کلاس های ایده‌آل های پلی ‌ماترویدال  
   
نویسنده بندری سمیه
منبع پژوهش هاي رياضي - 1401 - دوره : 8 - شماره : 2 - صفحه:1 -11
چکیده    در این مقاله رده ایده‌آل‌های پلی‌ماترویدال مورد مطالعه قرار گرفته‌اند. به ویژه نشان می‌دهیم که هر ایده‌آل پلی‌ماترویدال، تابع تجزیۀ منظم دارد و لذا می‌توانیم تحلیل خطی دقیق آن را بیان کنیم. همچنین ایده‌آل‌های پلی‌ماترویدال عام را دسته‌بندی می‌کنیم. در نهایت به دسته‌بندی ایده‌آل‌های یک‌جمله‌ای که همه توان‌هایشان پلی‌ماترویدال کوهن - مکالی تعمیم یافته هستند، می‌پردازیم.   
کلیدواژه ایده‌آل های پلی‌ماترویدال، تابع تجزیه منظم، ایده‌آل های عام، ایده‌آل های کوهن- مکالی تعمیم یافته، خارج قسمت‌های خطی
آدرس مرکز آموزش عالی فنی و مهندسی بوئین زهرا, گروه ریاضی, ایران
پست الکترونیکی somayeh.bandari@yahoo.com
 
   study and characterization of some classes of polymatroidal ideals  
   
Authors bandari somayeh
Abstract    introductionthroughout this paper, we consider monomial ideals of the polynomial ring  over a filed. we try to give some properties of the polymatroidal ideals, which are the special class of monomial ideals. herzog and takayama constructed explicit resolutions for all ideals with linear quotients which admit regular decomposition functions. they also shaw that this class contains all matroidal ideals. we generalize their result to the polymatroidal ideals. therefore, we can give an explicit linear resolution for any polymatroidal ideal. we also characterize generic polymatroidal ideals. the author and jafari [1] characterized generalized cohenmacaulay polymatroidal ideals. finally, we characterize monomial ideals which all their powers are generalized cohenmacaulay polymatroidal ideals.material and methodsa monomial ideal  is said to be polymatroidal, if it is single degree and for any two elements  such that  there exists an index  with  such that. in the case that the polymatroidal ideal is squarefree, it is called matroidal. we know that the powers of a polymatroidal ideal are again polymatroidal and polymatroidal ideals have linear quotients. therefore all powers of polymatroidal ideal have linear resolutions. let  has linear quotients with the order  of elements of. we can associate a unique decomposition function, that is a function  which maps a monomial  to, if  is the smallest index such that , where . the decomposition function  is called regular, if  for all  and.  we show that any polymatroidal ideal has a regular decomposition function. therefore we can give an explicit linear resolution for any polymatroidal ideal. by an example, we show that our result can not be extended to the weakly polymatroidal ideals even if they are generated in a single degree. recall that, a monomial ideal  is called generic if two distinct minimal generators  and  have the same positive degree in some variable , there is a third generator  which  and , where  is the least common multiple of  and .in the next result, we characterize generic polymatroidal ideals. a monomial ideal  is called generalized cohenmacaulay, whenever  is equidimensional and monomial localization  is cohenmacaulay for all monomial prime ideals, where  is unique homogenous maximal ideal of .finally, we characterize monomial ideals which all their powers are generalized cohenmacaulay polymatroidal ideals.results and discussionfor the first result, we show that any polymatroidal ideal has a regular decomposition function. so we have an explicit linear resolution of any polymatrodal ideal. in the next, we show that ifis a fully supported polymatroidal ideal generated in degree. then  is generic if and only if  is either a complete intersection or.finally, we prove that if   is a fully supported monomial ideal in  and generated in degree. then is a generalized cohenmacaulay polymatroidal ideal for all  if and only if where  and  for some integers  and one of the following statements holds true: is a principal ideal. is a veronese ideal.is equidimensional and  for all . is an unmixed matroidal ideal of degree 2.conclusionthe following conclusions were drawn from this research:any polymatroidal ideal has a regular decomposition function.characterization of generic ideals.characterization of monomial ideals which all their powers are generalized cohenmacaulay polymatroidal ideals.
Keywords polymatroidal ideals ,regular decomposition function ,generic ideals ,generalized cohen-macaulay ideals ,linear quotients
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved