|
|
یک توپولوژی موضعاً محدب روی جبرهای بورلینگ
|
|
|
|
|
نویسنده
|
مقصودی سعید
|
منبع
|
پژوهش هاي رياضي - 1398 - دوره : 5 - شماره : 2 - صفحه:221 -228
|
چکیده
|
فرض کنید یک گروه موضعاً فشرده، یک تابع وزن و فضای توابع اندازه پذیر روی باشد که اساساً کراندار و در بینهایت صفر می شوند. در این مقاله توپولوژی موضعاً محدب را روی فضای وزندار بررسی می کنیم. نشان میدهیم که دوگان با این توپولوژی برابر فضای باناخ است. علاوه بر این، برخی ویژگیهای فضای با توپولوژی مذکور را بررسی میکنیم.
|
کلیدواژه
|
گروه موضعاً فشرده، توپولوژی موضعاً محدب، فضای لبگ وزندار، دوگان.
|
آدرس
|
دانشگاه زنجان, گروه ریاضی, ایران
|
پست الکترونیکی
|
s_maghsodi@znu.ac.is
|
|
|
|
|
|
|
|
|
A locally Convex Topology on the Beurling Algebras
|
|
|
Authors
|
Maghsoudi Saeid
|
Abstract
|
IntroductionLet G be a locally compact group with a fixed left Haar measure λ and be a weight function on G; that is a Borel measurable function with for all . We denote by the set of all measurable functions such that ; the group algebra of G as defined in [2]. Then with the convolution product “*” and the norm defined by is a Banach algebra known as Beurling algebra. We denote by n(G,) the topology generated by the norm . Also, let denote the space of all measurable functions 𝑓 with , the Lebesgue space as defined in [2].Then with the product defined by , the norm defined by , and the complex conjugation as involution is a commutative algebra. Moreover, is the dual of . In fact, the mapping is an isometric isomorphism. We denote by the subalgebra of consisting of all functions 𝘨 on G such that for each , there is a compact subset K of G for which. For a study of in the unweighted case see [3,6]. We introduce and study a locally convex topology on such that can be identified with the strong dual of . Our work generalizes some interesting results of [15] for group algebras to a more general setting of weighted group algebras. We also show that (,) could be a normable or bornological space only if G is compact. Finally, we prove that is complemented in if and only if G is compact. For some similar recent studies see [4,7,8,10,1214]. One may be interested to see the work [9] for an application of these results.Main resultsWe denote by 𝒞 the set of increasing sequences of compact subsets of G and by ℛ the set of increasing sequences of real numbers in divergent to infinity. For any and , set and note that is a convex balanced absorbing set in the space . It is easy to see that the family 𝒰 of all sets is a base of neighbourhoods of zero for a locally convex topology on see for example [16]. We denote this topology by . Here we use some ideas from [15], where this topology has been introduced and studied for group algebras.Proposition 2.1 Let G be a locally compact group, and be a weight function on G. The norm topology n(G,) on coincides with the topology if and only if G is compact.Proposition 2.2 Let G be a locally compact group, and be a weight function on G. Then the dual of (,) endowed with the strong topology can be identified with endowed with topology.Proposition 2.3 Let G be a locally compact group, and be a weight function on G. Then the following assertions are equivalent:a) (,) is barrelled.b) (,) is bornological.c) (,) is metrizable.d) G is compact.Proposition 2.4 Let G be a locally compact group, and be a weight function on G. Then is not complemented in ../files/site1/files/52/10.pdf
|
Keywords
|
Locally compact group ,Locally convex topology ,Weighted Lebesgue space ,Dual.
|
|
|
|
|
|
|
|
|
|
|