>
Fa   |   Ar   |   En
   یک توپولوژی موضعاً محدب روی جبرهای بورلینگ  
   
نویسنده مقصودی سعید
منبع پژوهش هاي رياضي - 1398 - دوره : 5 - شماره : 2 - صفحه:221 -228
چکیده    فرض کنید  یک گروه موضعاً فشرده،  یک تابع وزن و   فضای توابع اندازه پذیر روی   باشد که اساساً کراندار و در بینهایت صفر می شوند. در این مقاله توپولوژی موضعاً محدب  را روی فضای وزندار  بررسی می کنیم. نشان می‌دهیم که دوگان   با این توپولوژی برابر فضای باناخ  است. علاوه بر این، برخی ویژگی‌های فضای    با توپولوژی مذکور را بررسی می‌کنیم. 
کلیدواژه گروه موضعاً فشرده، توپولوژی موضعاً محدب، فضای لبگ وزندار، دوگان.
آدرس دانشگاه زنجان, گروه ریاضی, ایران
پست الکترونیکی s_maghsodi@znu.ac.is
 
   A locally Convex Topology on the Beurling Algebras  
   
Authors Maghsoudi Saeid
Abstract    IntroductionLet G be a locally compact group with a fixed left Haar measure λ  and   be a weight function on G;  that is a Borel measurable function  with   for all .   We denote by  the set of all measurable  functions  such that ; the group algebra of  G  as defined in [2]. Then   with the convolution product “*” and the norm   defined by   is a Banach algebra known as Beurling algebra. We denote by n(G,) the topology generated by the  norm .    Also, let  denote the space of all measurable functions 𝑓  with , the Lebesgue space as defined in [2].Then   with   the product  defined by , the   norm  defined by  , and the complex conjugation as involution is a commutative algebra. Moreover,  is the dual of . In fact, the mapping   is an isometric isomorphism. We denote by the subalgebra of  consisting of all functions  𝘨 on G such that for each , there is a compact subset K of G for which.  For a study of in the unweighted case see  [3,6]. We introduce and study a locally convex topology  on  such that  can be identified with the strong dual of . Our work generalizes  some interesting results of  [15] for group algebras to a more general setting of weighted group algebras. We also show that (,)  could be a normable or bornological space only if G is compact. Finally, we prove that  is complemented in   if and only if G is compact. For some similar recent studies see [4,7,8,10,1214]. One may be interested to see the work [9] for an application of these results.Main resultsWe denote by  𝒞  the set of increasing sequences of compact subsets of G and by ℛ the set of increasing sequences  of real numbers in  divergent to infinity. For any  and , set and note that  is a convex balanced absorbing set in the space . It is easy to see that the family 𝒰 of all sets  is a base of neighbourhoods of zero for a locally convex topology on  see for example [16]. We denote this topology by .  Here we use some ideas from  [15], where this topology has been introduced and studied for  group algebras.Proposition 2.1 Let G be a locally compact group, and  be a weight function on G.   The norm topology n(G,) on  coincides with the topology  if and only if G is compact.Proposition 2.2 Let G be a locally compact group, and  be a weight function on G.  Then the dual of (,)  endowed with the strong topology can be identified with endowed with topology.Proposition 2.3 Let G be a locally compact group, and  be a weight function on G.  Then the following assertions are equivalent:a) (,)  is barrelled.b) (,)  is bornological.c) (,)  is metrizable.d) G  is compact.Proposition 2.4 Let G be a locally compact group, and  be a weight function on G.  Then  is not complemented in ../files/site1/files/52/10.pdf
Keywords Locally compact group ,Locally convex topology ,Weighted Lebesgue space ,Dual.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved