|
|
تابعگونهای توسیع مدولهای کوهمولوژی موضعی تعمیمیافته
|
|
|
|
|
نویسنده
|
وحیدی علیرضا ,حسنی فیصل ,حسینزاده الهام
|
منبع
|
پژوهش هاي رياضي - 1400 - دوره : 7 - شماره : 1 - صفحه:151 -164
|
چکیده
|
فرض کنیم r یک حلقه نوتری جابهجایی با واحد ناصفر، a ایدهآلی از حلقه r و m یک r-مدول متناهیمولد و x یک r-مدول دلخواه باشد. در این مقاله، برای اعداد صحیح و نامنفی s، t و r-مدول متناهیمولد n، متعلق بودن را در زیررستههای سر از رسته مدولها بررسی میکنیم و کرانهای بالایی برای بعد انژکتیو و اعداد باس h_t a(m,x) ارایه میکنیم. همچنین برخی نتایج در مورد هممتناهی بودن و مینیماکس بودن h_t a(m,x) و متناهی بودن ((x,m)h_a t)ass_r بهدست میآوریم.
|
کلیدواژه
|
اعداد باس، ایدهآلهای اول وابسته، بعدهای انژکتیو، تابعگونهای توسیع، مدولهای کوهمولوژی موضعی تعمیمیافته، مدولهای مینیماکس، مدولهای هممتناهی.
|
آدرس
|
دانشگاه پیام نور, گروه ریاضی, ایران, دانشگاه پیام نور, گروه ریاضی, ایران, دانشگاه پیام نور, گروه ریاضی, ایران
|
|
|
|
|
|
|
|
|
|
|
Extension Functors of Generalized Local Cohomology Modules
|
|
|
Authors
|
Vahidi Alireza ,Hassani Faisal ,Hoseinzade Elham
|
Abstract
|
IntroductionThroughout this paper, is a commutative Noetherian ring with nonzero identity, is an ideal of , is a finitely generated module, lrm;and is an arbitrary module which is not necessarily finitely generated. Let L be a finitely generated Rmodule. Grothendieck, in [11], conjectured that is finitely generated for all . In [12], lrm;Hartshorne gave a counterexample and raised the question whether is finitely generated for all and . The th generalized local cohomology module of and with respect to ,was introduced by Herzog in [14]. It is clear that is just the ordinary local cohomology module of with respect to . As a generalization of Hartshornechr('39')s question, we have the following question for generalized local cohomology modules (see [25, Question 2.7]).Question. When is finitely generated for all and ? In this paper, we study in general for a finitely generated module and an arbitrary module .Material and methodsThe main tool used in the proofs of the main results of this paper is the spectral sequences.Results and discussionWe present some technical results (Lemma 2.1 and Theorems 2.2, 2.9, and 2.14) which show that, in certain situation, for nonnegative integers , , , and with , and the modules and are in a Serre subcategory of the category of modules (i.e. the class of modules which is closed under taking submodules, quotients, and extensions).ConclusionWe apply the main results of this paper to some Serre subcategories (e.g. the class of zero modules and the class of finitely generated modules) and deduce some properties of generalized local cohomology modules. In Corollaries 3.13.3, we present some upper bounds for the injective dimension and the Bass numbers of generalized local cohomology modules. We study cofiniteness and minimaxness of generalized local cohomology modules in Corollaries 3.43.8. Recall that, an module is said to be cofinite (resp. minimax) if and is finitely generated for all [12] (resp. there is a finitely generated submodule of such that is Artinian [26]) where. We show that if is finitely generated for all and is minimax for all , then is cofinite for all and is finitely generated (Corollary 3.5). We prove that if is finitely generated for all , where is the arithmetic rank of , and is cofinite for all , then is also an cofinite module (Corollary 3.6). We show that if is local, , and is finitely generated for all , then is cofinite for all if and only if is finitely generated for all (Corollary 3.7). We also prove that if is local, , is finitely generated for all , and (or ) is cofinite for all , then is cofinite for all (Corollary 3.8). In Corollary 3.9, we state the weakest possible conditions which yield the finiteness of associated prime ideals of generalized local cohomology modules. Note that, one can apply the main results of this paper to other Serre subcategories to deduce more properties of generalized local cohomology modules../files/site1/files/71/15.pdf
|
Keywords
|
Associated prime ideals ,Bass numbers ,Cofinite modules ,Extension functors ,Generalized local cohomology modules ,Injective dimensions ,Minimax modules.
|
|
|
|
|
|
|
|
|
|
|