>
Fa   |   Ar   |   En
   حل حالت خاصی از مسئله معکوس استورم-لیوویل با اثر ثانوی با استفاده از چندجمله‌ای‌های چبیشف  
   
نویسنده اکبرپور کیاسری شهربانو ,دباغیان عبدالهادی ,نعمتی عبدالعلی
منبع پژوهش هاي رياضي - 1400 - دوره : 7 - شماره : 2 - صفحه:201 -214
چکیده    در این پژوهش، معادلۀ دیفرانسیل با اثر ثانوی تحت شرایط مرزی مجزا روی یک فاصله متناهی را در نظر می گیریم. سپس جواب تقریبی را برای حالت خاصی از مسئله اثر ثانوی عکس با استفاده از چندجمله ای های چبیشف نوع اول محاسبه می کنیم. سرانجام نتایج عددی را به‌وسیلۀ چند مثال ارائه می‌دهیم.
کلیدواژه مسئله معکوس، معادله استورم-لیوویل با اثر ثانوی، چندجمله‌ای‌های چبیشف.
آدرس دانشگاه آزاد اسلامی واحد جویبار, گروه ریاضی, ایران, دانشگاه آزاد اسلامی واحد نکا, گروه ریاضی, ایران, دانشگاه مازندران, گروه ریاضی, ایران
 
   Solving Special Case of Inverse Sturm-Liouville Problem with Aftereffect by using Chebyshev Polynomials  
   
Authors Akbarpoor Shahrbanoo ,Dabbaghian Abdol Hadi ,Nematy Abdolali
Abstract    IntroductionIn this study, we consider the differential equation with aftereffect under the separated boundary conditions on a finite interval. In fact, we consider the SturmLiouville operator disorganized by a Volterra integral operator. We obtain the numerical solution for the special case of the inverse aftereffect problem by applying Chebyshev interpolation method by calculating the solution of the integrodifferential equations.In section 2, we show the asymptotic form of the solution and the eigenvalues of the problem and present the uniqueness theorem for the solution of the inverse aftereffect problem. In section 3, we approximate the function M in the special case contained, by using the method of Chebyshev interpolation and provide the numerical algorithm for solving the inverse aftereffect problem.PreliminariesIn this section, our goal is to show asymptotic form of the solution and the eigenvalues of the problem and to present the uniqueness theorem for the inverse aftereffect problem under the given boundary conditions.Numerical algorithmIn this section, we describe a numerical method based on Chebyshev interpolation method by using Chebyshev polynomials of the first kind for solving the inverse aftereffect problem by calculating the solution of the integrodifferential equations.Since the solution of the integral equation is the solution of inverse problem, so it is sufficient that we solve the integral equation. We apply Chebyshev interpolation method for solving the integral equation. We use Chebyshev polynomials of the first kind as the basic functions for calculating the approximation of the function M and convert the integral equation to the system of the linear equations. We apply Matlab software program for drawing the figures.ConclusionIn this study, we applied Chebyshev polynomials of the first kind to get the approximation of the solution of inverse problem for the special case of the aftereffect equation under the separated boundary conditions. Also, we provided some examples to calculate the numerical values of the function M and showed the stable numerical results in the presented examples../files/site1/files/72/3Abstract.pdf
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved