|
|
یک روش عددی براساس ماتریس عملیاتی برای حل معادلات دیفرانسیل تاخیری کسری
|
|
|
|
|
نویسنده
|
رحیم خانی پریسا ,اردوخانی یداله
|
منبع
|
پژوهش هاي رياضي - 1399 - دوره : 6 - شماره : 4 - صفحه:587 -600
|
چکیده
|
در این مقاله، روشی عددی برای حل معادلات دیفرانسیل تاخیری بیان میشود. هدف اصلی، معرفی تابعهای تکهای براساس تابعهای تیلور کسری در محاسبات کسری است. همچنین یک فرمولبندی کلی برای ماتریس عملیاتی انتگرال کسری این توابع نتیجه گرفته میشود. این ماتریس با روش هممکانی برای تبدیل حل این مسئله به حل یک دستگاه از معادلات جبری، استفاده میشود. مثالهایی برای نشان دادن کاربرد روش حاضر، آورده میشود.
|
کلیدواژه
|
معادلات دیفرانسیل تاخیری کسری، روش هممکانی، تابع تیلور کسری، مشتق کاپوتو، ماتریس عملیاتی.
|
آدرس
|
دانشگاه الزهرا, دانشکده علوم ریاضی, گروه ریاضی, ایران, دانشگاه الزهرا, دانشکده علوم ریاضی, گروه ریاضی, ایران
|
پست الکترونیکی
|
ordokhani@alzahra.ac.ir
|
|
|
|
|
|
|
|
|
A Numerical Approach Based on Operational Matrix for Solving Fractional Delay Differential Equations
|
|
|
Authors
|
Rahimkhani Parisa ,Ordokhani Yadollah
|
Abstract
|
IntroductionFractional calculus has been used to model physical and chemical processes that are found to be best described by fractional differential equations. Recently, fractional calculus has attracted much attention since it plays an important role in many fields of science and engineering. Fractional delay differential equations (FDDEs) are a class of fractional differential equations that the rate of change of unknown function depends not only on the values of unknown function for the same time value but also on previous time values. The solution of delay differential equations not only requires information of current state, but also requires some information about the previous state. FDDEs have received considerable recent attention and been proven to model many real life problems. For most of fractional order delay differential equations, exact solutions are not known. Therefore different numerical methods have been developed and applied for providing approximate solutions. The objective of this paper is to define the new fractionalorder piecewise functions based on the Taylor polynomials for solving the FDDEs. This method is accurate and easy to implement in solving FDDEs.Material and methodsIn this paper, first we construct piecewise functions based on the fractionalorder Taylor functions. Then, we calculate the fractional integral operational matrix for the fractional Taylor piecewise functions. This matrix and collocation method are utilized to reduce FDDEs to a system of algebraic equations which can be solved via a suitable numerical method.Results and discussionWe apply mentioned paper for solving some test problems to highlight the significant features of our technique. Also, we compare our numerical results with multiquadric approximation scheme. The reported results demonstrate that there is a good agreement between approximate solution and exact solution. We plot the numerical solutions obtained by the presented method for various values of alpha; with the exact solution. It is obvious from these Figures that, as alpha; is close to integer value, numerical solutions converge to the exact solution.ConclusionThe following conclusions were drawn from this paper. Fractionalorder Taylor piecewise functions have three degrees of freedom (m, n, alpha;) but Taylor polynomials have one degree of freedom (m).Instead of converting fractionalorder Taylor piecewise functions into other functions, we have obtained the fractionalorder Taylor piecewise functions operational matrix directly.The main characteristic of this method is that it reduces under study problem to a system of algebraic equations which can be easily solved by an iterative method../files/site1/files/64/9.pdf
|
Keywords
|
Fractional delay differential equations ,Collocation method ,Fractional-Taylor function ,Caputo derivative ,Operational matrix.
|
|
|
|
|
|
|
|
|
|
|