>
Fa   |   Ar   |   En
   یک روش طیفی برپایه چندجمله ای های هان برای حل عددی معادلات انتگرال-دیفرانسیل مرتبه کسری با هسته به طور ضعیف منفرد  
   
نویسنده صالحی فریده ,سعیدی حبیب اله ,محسنی مقدم محمود
منبع پژوهش هاي رياضي - 1399 - دوره : 6 - شماره : 1 - صفحه:65 -78
چکیده    در این مقاله، چندجمله ای های گسسته هان وکاربرد آنها برای حل عددی معادلات انتگرالدیفرانسیل مرتبه کسری به‌طور ضعیف منفرد بررسی می‌شوند. این مقاله، برای اولین بار ماتریس عملیاتی انتگرال مرتبه کسری چندجمله‌ای‌های هان را ارائه می‌کند و با استفاده از آن معادله انتگرال مورد نظر به یک دستگاه معادلات جبری تبدیل می‌شود. هم‌چنین در این مقاله کران بالای خطای تقریب یک تابع بهوسیلۀ این چندجمله‌ای‌ها محاسبه می‌شود. سپس با حل چند مثال عددی نشان داده می‌شود که با به‌کارگیری تعداد کمی از جملات بسط نتایج قابل قبولی حاصل می‌شوند که با نتایج حاصل از روش‌های دیگر مقایسه می‌شوند. دقت قابل قبول به همراه روند پیاده‌سازی ساده، از خصوصیات روش مورد بحث است.
کلیدواژه معادلات انتگرال-دیفرانسیل مرتبه کسری منفرد ضعیف، چندجمله ای های هان، ماتریس عملیاتی، روش طیفی
آدرس دانشگاه آزاد اسلامی واحد کرمان, دانشکدۀ ریاضی, ایران, دانشگاه شهید باهنرکرمان, دانشکدۀ ریاضی و کامپیوتر, بخش ریاضی کاربردی, ایران, دانشگاه آزاد اسلامی واحد کرمان, دانشکدۀ ریاضی, ایران
 
   A Spectral Method Based on Hahn Polynomials for Numerical Solution of Fractional Integro-Differential Equations with Weakly Singular Kernel  
   
Authors Salehi Farideh ,Saeedi Habibollah ,Mohseni Moghadam Mahmoud
Abstract    IntroductionDespite wide applications of constant order fractional derivatives, some systems require the use of derivatives whose order changes with respect to other parameters. Samko and Ross produced an extension of the classical fractional calculus with a continuously varying order for differential and integral operators. Variableorder fractional (VOF) calculus has applications in optimal control, processing of geographical data, diffusion processes, description of anomalous diffusion, heattransfer problems, etc. Due to the VOF operators which are nonlocal with singular kernels, finding the exact solutions of VOF problems is difficult. Therefore, efficient numerical techniques are necessary to be developed. The numerical solution of VOF differential equation has been considered in some papers. Recently, discrete orthogonal polynomials have been considered as basis functions instead of continuous orthogonal polynomials. Discrete orthogonal polynomials are orthogonal with respect to a weighted discrete inner product. These polynomials have important applications in chemical engineering, theory of random matrices, queuing theory and image coding. In this paper, we focus on a special class of discrete polynomials, called Hahn polynomials. In this work, first, a new operational matrix is obtained for VOF integral of Hahn polynomials. Then, we use a spectral collocation technique combined with the associated operational matrices of VOF integral for solving weakly singular fractional integrodifferential equations.Material and methodsIn this scheme, the operational matrix of fractional integration of Hahn polynomials is calculated. This method converts the weakly singular fractional integrodifferential equations into an algebraic system which can be solved by a technique of linear algebra.Results and discussionIn this paper, some numerical examples are provided to show the accuracy and efficiency of the presented method. By using a small number of Hahn polynomials, significant results are achieved which are compared to other methods. A comparison to the numerical solutions by CAS and Haar wavelets and Adomain decomposition method, shows that this technique is accurate enough to be known as a powerful device.ConclusionThe following results are obtained from this research.The operational matrix of fractional integration of Hahn polynomials is presented for the first time.The main advantage of approximating a continuous function by Hahn polynomials is that they have a spectral accuracy at interval [0,N], where N is the number of bases.Furthermore, for estimating the coefficients of the expansion of approximate solution, we only have to compute a summation which is calculated exactly.Using Hahn polynomials, the numerical results achieved only by a small number of bases, are accurate in a larger interval and significant results are achieved../files/site1/files/61/7.pdf
Keywords Weakly Singular Fractional Integro-Differential Equations ,Hahn Polynomials ,Operational Matrix ,Spectral method
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved