|
|
آرنز منظم نگاشتهای دو خطی کراندار
|
|
|
|
|
نویسنده
|
شیخعلی ابوطالب ,حق نژاد آذر کاظم ,عبادیان علی
|
منبع
|
پژوهش هاي رياضي - 1399 - دوره : 6 - شماره : 2 - صفحه:235 -242
|
چکیده
|
در این مقاله به خواص آرنز منظم نگاشت دو خطی کران دار می پردازیم و نشان می دهیم که نگاشت دو خطی کران دار آرنز منظم است اگر و تنها اگر نگاشت خطی با ضابطۀ ضعیف فشرده باشد. سپس قضیهای را اثبات می کنیم که ویژگی ضعیف فشردگی نگاشت دو خطی کران دار و آرنز منظم را به یکدیگر مرتبط می سازد. همچنین به بررسی آرنز منظم و خاصیت ضعیف فشردگی نگاشت های خطی کران دار می پردازیم و نتایجی مشابه نتایج دیلز، اولگر و آریکان را بیان می کنیم. در ادامه ارتباط بین آرنز منظم جبرهای باناخ و انعکاسی بودن را بررسی میکنیم.
|
کلیدواژه
|
آرنز منظم، جبر باناخ، دوگان دوم، ضربهای آرنز، ضعیف فشردگی، نگاشت دو خطی.
|
آدرس
|
دانشگاه پیام نور, دانشکدۀ علوم پایه, گروه ریاضی, ایران, دانشگاه محقق اردبیلی, دانشکدۀ علوم, گروه ریاضیات و کاربردها, ایران, دانشگاه پیام نور, دانشکدۀ علوم پایه, گروه ریاضی, ایران
|
|
|
|
|
|
|
|
|
|
|
On the Properties of the Arens Regularity of Bounded Bilinear Mappings
|
|
|
Authors
|
Shikh Ali Abotalb ,Haghnejad azar Kazem ,Abadian Ali
|
Abstract
|
Introduction Let , and be Banach spaces and be a bilinear mapping. In 1951 Arens found two extension for as and from into . The mapping is the unique extension of such that from into is continuous for every , but the mapping is not in general continuous from into unless . Thus for all the mapping is continuous if and only if is Arens regular. Regarding as a Banach , the operation extends to and defined on . These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space becomes a Banach algebra.Material and methods The constructions of the two Arens multiplications in lead us to definition of topological centers for with respect to both Arens multiplications. The topological centers of Banach algebras, module actions and applications of them were introduced and discussed in some manuscripts. It is known that the multiplication map of every nonreflexive, algebra is Arens regular. In this paper, we extend some problems from Banach algebras to the general criterion on module actions and bilinear mapping with some applications in group algebras.Results and discussionWe will investigate on the Arens regularity of bounded bilinear mappings and we show that a bounded bilinear mapping is Arens regular if and only if the linear map with is weakly compact, so we prove a theorem that establish the relationships between Arens regularity and weakly compactness properties for any bounded bilinear mappings. We also study on the Arens regularity and weakly compact property of bounded bilinear mapping and we have analogous results to that of Dalse, lger and Arikan. For Banach algebras, we establish the relationships between Arens regularity and reflexivity. ConclusionThe following conclusions were drawn from this research.if and only if the bilinear mapping is Arens regular.A bounded bilinear mapping is Arens regular if and only if the linear map with is weakly compact. if and only if the bilinear mapping is Arens regular.Assume that has approximate identity. Then is Arens regular if and only if is reflexive../files/site1/files/62/9Abstract.pdf
|
Keywords
|
Arens product ,Arens regularity ,Banach algebra ,bilinear map ,second dual ,weakly compact.
|
|
|
|
|
|
|
|
|
|
|