>
Fa   |   Ar   |   En
   on the stability of the pexiderized cubic functional equation in multi-normed spaces  
   
نویسنده nazarianpoor mahdi ,sadeghi ghadir
منبع sahand communications in mathematical analysis - 2018 - دوره : 9 - شماره : 1 - صفحه:45 -83
چکیده    In this paper, we investigate the hyers-ulam stability of the orthogonally cubic equation and pexiderized cubic equation: f (kx + y) + f (kx − y) = g(x + y) + g(x − y) + 2/k g(kx) − 2g(x), in multi-normed spaces by the direct method and the fixed point method. moreover, we prove the hyers-ulam stability of the 2-variables cubic equation: f (2x + y, 2z + t) + f (2x − y, 2z − t) = 2f (x + y, z + t) + 2f (x − y, z − t) + 12f (x, z), and orthogonally cubic type and k-cubic equation in multi-normed spaces. a counter example for non-stability of the cubic equation is also discussed.
کلیدواژه hyers-ulam stability ,multi-normed space ,cubic functional equation ,pexiderized cubic functional equation ,2-variables cubic functional equation.
آدرس hakim sabzevari university, department of mathematics and computer sciences, ایران, hakim sabzevari university, department of mathematics and computer sciences, ایران
پست الکترونیکی ghadir54@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved