>
Fa   |   Ar   |   En
   sharp estimates of hermitian toeplitz determinants for some subclasses of sakaguchi type function related to sine function  
   
نویسنده vijayalakshmi sangarambadi padmanabhan ,yalçın sibel ,sudharsan tirumalai
منبع sahand communications in mathematical analysis - 2025 - دوره : 22 - شماره : 1 - صفحه:175 -191
چکیده    Hermitian toeplitz determinants are utilized across various fields, such as functional analysis, applied mathematics, physics, and technical sciences. this paper establishes a link with specific subclasses of analytic functions. extensive research exists regarding estimating second and third hankel determinants for normalized analytic functions within this domain. the current research seeks to establish precise upper and lower bounds for the second and third-order hermitian toeplitz determinants associated with specific  novel subclasses of sakaguchi-type functions,  $s_s^*(sin z), s_c^*(sin z)$ and $s_p^q(sin z)$  related to the sine function. further, the sharp estimates of  zalcman functional   $|a_{n+m-1}-a_na_m| $ for $n=2$ and $n=2$, $m=3$  are considered.
کلیدواژه sakaguchi functions ,hermitian toeplitz ,sine function ,starlike functions
آدرس dwaraka doss goverdhan doss vaishnav college, department of mathematics, india, bursa uludag university, faculty of arts and sciences, department of mathematics, turkey, s.i.v.e.t college, department of mathematics, india
پست الکترونیکی tvsudharsan@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved