|
|
the generalized inequalities via means and positive linear mappings
|
|
|
|
|
نویسنده
|
nasiri leila ,shams mehdi
|
منبع
|
sahand communications in mathematical analysis - 2022 - دوره : 19 - شماره : 2 - صفحه:133 -148
|
چکیده
|
In this paper, we establish further improvements of the young inequality and its reverse. then, we assert operator versions corresponding them. moreover, an application including positive linear mappings is given. for example, if $a,bin {mathbb b}({mathscr h})$ are two invertible positive operators such that $0begin{align*}& phi ^{2} bigg(a nabla _{nu} b+ rmm left( a^{1}+a^{1} sharp_{mu} b^{1} 2 left(a^{1} sharp_{frac{mu}{2}} b^{1} right)right)& qquad +left(frac{nu}{mu} right) mm bigg(a^{1}nabla_{mu} b^{1} a^{1} sharp_{mu} b^{1}bigg)bigg) & quad leq left( frac{k(h)}{ kleft( sqrt{{h^{’}}^{mu}},2 right)^{r^{’}}} right) ^{2} phi^{2} (a sharp_{nu} b),end{align*}where $r=min{nu,1nu}$, $k(h)=frac{(1+h)^{2}}{4h}$, $h=frac{m}{m}$, $h^{’}=frac{m^{’}}{m^{’}}$ and $r^{’}=min{2r,12r}$. the results of this paper generalize the results of recent years.
|
کلیدواژه
|
operator means ,numerical means ,kantorovich’s constant ,positive linear map
|
آدرس
|
lorestan university, faculty of science, department of mathematics and computer science, iran, university of kashan, faculty of mathematical sciences, department of statistics, iran
|
پست الکترونیکی
|
mehdishams@kashanu.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|