>
Fa   |   Ar   |   En
   Axis-exchanged compensation and gait parameters analysis for high accuracy indoor pedestrian dead reckoning  
   
نویسنده zhang h. ,zhang j. ,zhou d. ,wang w. ,li j. ,ran f. ,ji y.
منبع journal of sensors - 2015 - دوره : 2015 - شماره : 0
چکیده    Pedestrian dead reckoning (pdr) is an effective way for navigation coupled with gnss (global navigation satellite system) or weak gnss signal environment like indoor scenario. however,indoor location with an accuracy of 1 to 2 meters determined by pdr based on mems-imu is still very challenging. for one thing,heading estimation is an important problem in pdr because of the singularities. for another thing,walking distance estimation is also a critical problem for pedestrian walking with randomness. based on the above two problems,this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. in detail,an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. besides,real-time heading is updated by r-adaptive kalman filter. moreover,gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. thus,a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. furthermore,a step length model adjusted by cadence is established for step length estimation. compared to the traditional pdr navigation,experimental results showed that the error of navigation reduces 32.6%. © 2015 honghui zhang et al.
آدرس key laboratory of special fiber optics and optical access networks,ministry of education,shanghai university, China, key laboratory of special fiber optics and optical access networks,ministry of education,shanghai university,shanghai,china,microelectronic research and development center,shanghai university,shanghai,china,key laboratory of advanced displays and system application,ministry of education,shanghai university, China, microelectronic research and development center,shanghai university, China, key laboratory of special fiber optics and optical access networks,ministry of education,shanghai university, China, microelectronic research and development center,shanghai university, China, microelectronic research and development center,shanghai university,shanghai,china,key laboratory of advanced displays and system application,ministry of education,shanghai university, China, microelectronic research and development center,shanghai university,shanghai,china,key laboratory of advanced displays and system application,ministry of education,shanghai university, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved