>
Fa   |   Ar   |   En
   Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces  
   
نویسنده tao x. ,yu x. ,zhang s.
منبع journal of function spaces - 2010 - دوره : 8 - شماره : 1 - صفحه:1 -16
چکیده    In this article,we consider the marcinkiewicz integrals with variable kernels defined by μω(f)(x)= ( ∫ 0 ∞|∫ |x-y|≤t ω(x,x-y)/|x-y| n-1f(y)dy| 2 dt/t 3) 1/2,where ω(x,z) ∈ l ∞(ℝ n)×l q(double-struck s sign n-1) for q > 1. we prove that the operator μω is bounded from hardy space,h p(ℝ n),to l p(ℝ n) space; and is bounded from weak hardy space,h p,∞(ℝ n),to weak l p(ℝ n) space for max{2n/2n+1,n/n+α}<p<1,if ω satisfies the l 1,α -dini condition with any 0<≤1. copyright © 2010 hindawi publishing corporation.
کلیدواژه Hardy space; L 1 ,α-Dini condition; Marcinkiewicz integral; variable kernel; weak Hardy space
آدرس department of mathematics,zhejiang university of science and technology,hangzhou,zhejiang province, China, department of mathematics,zhejiang university of science and technology,hangzhou,zhejiang province, China, department of mathematics,zhejiang university of science and technology,hangzhou,zhejiang province, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved