>
Fa   |   Ar   |   En
   Smooth approximation of lipschitz functions on finsler manifolds  
   
نویسنده garrido m.i. ,jaramillo j.a. ,rangel y.c.
منبع journal of function spaces - 2013 - دوره : 2013 - شماره : 0
چکیده    We study the smooth approximation of lipschitz functions on finsler manifolds,keeping control on the corresponding lipschitz constants. we prove that,given a lipschitz function f: m → r defined on a connected,second countable finsler manifold m,for each positive continuous function ε: m → (0,∞) and each r > 0,there exists a c 1 -smooth lipschitz function g: m → r such that | f (x) - g (x) | ≤ ε (x),for every x ∈ m,and l i p (g) ≤ l i p (f) + r. as a consequence,we derive a completeness criterium in the class of what we call quasi-reversible finsler manifolds. finally,considering the normed algebra c b 1 (m) of all c 1 functions with bounded derivative on a complete quasi-reversible finsler manifold m,we obtain a characterization of algebra isomorphisms t: c b 1 (n) → c b 1 (m) as composition operators. from this we obtain a variant of myers-nakai theorem in the context of complete reversible finsler manifolds. © 2013 m. i. garrido et al.
آدرس instituto de matemática interdisciplinar (imi),departamento de geometría y topología,universidad complutense de madrid, Spain, instituto de matemática interdisciplinar (imi),departamento de análisis matemático,universidad complutense de madrid, Spain, departamento de matemática,universidad centroccidental lisandro alvarado,barquisimeto 3001, Venezuela
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved