|
|
On the existence of polynomials with chaotic behaviour
|
|
|
|
|
نویسنده
|
bernardes n.c. ,peris a.
|
منبع
|
journal of function spaces - 2013 - دوره : 2013 - شماره : 0
|
چکیده
|
We establish a general result on the existence of hypercyclic (resp.,transitive,weakly mixing,mixing,frequently hypercyclic) polynomials on locally convex spaces. as a consequence we prove that every (real or complex) infinite-dimensional separable frèchet space admits mixing (hence hypercyclic) polynomials of arbitrary positive degree. moreover,every complex infinite-dimensional separable banach space with an unconditional schauder decomposition and every complex frèchet space with an unconditional basis support chaotic and frequently hypercyclic polynomials of arbitrary positive degree. we also study distributional chaos for polynomials and show that every infinite-dimensional separable banach space supports polynomials of arbitrary positive degree that have a dense distributionally scrambled linear manifold. © 2013 nilson c. bernardes jr. and alfredo peris.
|
|
|
آدرس
|
departamento de matemática aplicada,instituto de matemática,universidade federal do rio de janeiro,cp 68530,21945-970 rio de janeiro, Brazil, iumpa,universitat politècnica de valència,departament de matemática aplicada, Spain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|