>
Fa   |   Ar   |   En
   Convolution algebraic structures defined by hardy-type operators  
   
نویسنده miana p.j. ,royo j.j. ,sánchez-lajusticia l.
منبع journal of function spaces - 2013 - دوره : 2013 - شماره : 0
چکیده    The main aim of this paper is to show that certain banach spaces,defined via integral kernel operators,are banach modules (with respect to some known banach algebras and convolution products on +). to do this,we consider some suitable kernels such that the hardy-type operator is bounded in weighted lebesgue spaces l ω p + for p ≥ 1. we also show new inequalities in these weighted lebesgue spaces. these results are applied to several concrete function spaces,for example,weighted sobolev spaces and fractional sobolev spaces defined by weyl fractional derivation. © 2013 pedro j. miana et al.
آدرس departamento de matemáticas e iuma,universidad de zaragoza, Spain, departamento de matemáticas e iuma,universidad de zaragoza, Spain, departamento de matemáticas e iuma,universidad de zaragoza, Spain
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved