|
|
Convolution algebraic structures defined by hardy-type operators
|
|
|
|
|
نویسنده
|
miana p.j. ,royo j.j. ,sánchez-lajusticia l.
|
منبع
|
journal of function spaces - 2013 - دوره : 2013 - شماره : 0
|
چکیده
|
The main aim of this paper is to show that certain banach spaces,defined via integral kernel operators,are banach modules (with respect to some known banach algebras and convolution products on +). to do this,we consider some suitable kernels such that the hardy-type operator is bounded in weighted lebesgue spaces l ω p + for p ≥ 1. we also show new inequalities in these weighted lebesgue spaces. these results are applied to several concrete function spaces,for example,weighted sobolev spaces and fractional sobolev spaces defined by weyl fractional derivation. © 2013 pedro j. miana et al.
|
|
|
آدرس
|
departamento de matemáticas e iuma,universidad de zaragoza, Spain, departamento de matemáticas e iuma,universidad de zaragoza, Spain, departamento de matemáticas e iuma,universidad de zaragoza, Spain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|