>
Fa   |   Ar   |   En
   Ulam-Hyers Stability of Trigonometric Functional Equation with Involution  
   
نویسنده chung j. ,choi c.-k. ,kim j.
منبع journal of function spaces - 2015 - دوره : 2015 - شماره : 0
چکیده    Let s and g be a commutative semigroup and a commutative group,respectively,c and r+ the sets of complex numbers and nonnegative real numbers,respectively,and σ:s→s or σ:g→g an involution. in this paper,we first investigate general solutions of the functional equation f(x+σy)=f(x)g(y)-g(x)f(y) for all x,y s,where f,g:s→c. we then prove the hyers-ulam stability of the functional equation; that is,we study the functional inequality |f(x+σy)-f(x)g(y)+g(x)f(y)|≤ψ(y) for all x,y g,where f,g:g→c and ψ:g→r+. © 2015 jaeyoung chung et al.
آدرس department of mathematics,kunsan national university, South Korea, department of mathematics,chonbuk national university, South Korea, department of mathematics and institute of pure and applied mathematics,chonbuk national university, South Korea
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved