>
Fa   |   Ar   |   En
   Cross-modality 2d-3d face recognition via multiview smooth discriminant analysis based on ELM  
   
نویسنده jin y. ,cao j. ,ruan q. ,wang x.
منبع journal of electrical and computer engineering - 2014 - دوره : 2014 - شماره : 0
چکیده    In recent years,3d face recognition has attracted increasing attention from worldwide researchers. rather than homogeneous face data,more and more applications require flexible input face data nowadays. in this paper,we propose a new approach for cross-modality 2d-3d face recognition (fr),which is called multiview smooth discriminant analysis (msda) based on extreme learning machines (elm). adding the laplacian penalty constrain for the multiview feature learning,the proposed msda is first proposed to extract the cross-modality 2d-3d face features. the msda aims at finding a multiview learning based common discriminative feature space and it can then fully utilize the underlying relationship of features from different views. to speed up the learning phase of the classifier,the recent popular algorithm named extreme learning machine (elm) is adopted to train the single hidden layer feedforward neural networks (slfns). to evaluate the effectiveness of our proposed fr framework,experimental results on a benchmark face recognition dataset are presented. simulations show that our new proposed method generally outperforms several recent approaches with a fast training speed. © 2014 yi jin et al.
آدرس beijing key lab of traffic data analysis and mining,school of computer and information technology,beijing jiaotong university, China, institute of information and control,hangzhou dianzi university, China, beijing key lab of traffic data analysis and mining,school of computer and information technology,beijing jiaotong university, China, beijing key lab of traffic data analysis and mining,school of computer and information technology,beijing jiaotong university, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved