>
Fa   |   Ar   |   En
   An optimal double inequality between Seiffert and geometric means  
   
نویسنده chu y.-m. ,wang m.-k. ,wang z.-k.
منبع journal of applied mathematics - 2011 - دوره : 2011 - شماره : 0
چکیده    For α,β ∈ (0,1/2) we prove that the double inequality g(αa + (1 - α)b,αb + (1 - α)a) < p (a,b) < g (βa + (1 - β)b,βb + (1 - β) a) holds for all a,b > 0 with a ≠ b if and only if α ≤ (1 -√1-4/π 2)/2 and β ≥ (3 - √3)/6. here,g(a,b) and p(a,b) denote the geometric and seiffert means of two positive numbers a and b,respectively. copyright © 2011 yu-ming chu et al.
آدرس department of mathematics,huzhou teachers college, China, department of mathematics,huzhou teachers college, China, department of mathematics,hangzhou normal university, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved