>
Fa   |   Ar   |   En
   A minimum problem for finite sets of real numbers with nonnegative sum  
   
نویسنده chiaselotti g. ,marino g. ,nardi c.
منبع journal of applied mathematics - 2012 - دوره : 2012 - شماره : 0
چکیده    Let n and r be two integers such that 0 < r < n; we denote by γ(n,r)[η(n,r)] the minimum [maximum] number of the nonnegative partial sums of a sum ∑ 1=1 n a i ≥ 0,where a 1,...,a n are n real numbers arbitrarily chosen in such a way that r of them are nonnegative and the remaining n - r are negative. we study the following two problems: (p 1) which are the values of γ(n,r) and η(n,r) for each n and r,0 < r ≤ n? (p2) if q is an integer such that γ(n,r) ≤ q ≤ η(n,r),can we find n real numbers a 1,...,a n,such that r of them are nonnegative and the remaining n - r are negative with ∑ 1=1 n a i ≥ 0,such that the number of the nonnegative sums formed from these numbers is exactly q? © 2012 g. chiaselotti et al.
آدرس dipartimento di matematica,universitá della calabria,via pietro bucci cubo 30b, Italy, dipartimento di matematica,universitá della calabria,via pietro bucci cubo 30c, Italy, dipartimento di matematica,universitá della calabria,via pietro bucci cubo 30c, Italy
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved