>
Fa   |   Ar   |   En
   Numerical solutions of stochastic differential equations with piecewise continuous arguments under Khasminskii-type conditions  
   
نویسنده song m. ,zhang l.
منبع journal of applied mathematics - 2012 - دوره : 2012 - شماره : 0
چکیده    The main purpose of this paper is to investigate the convergence of the euler method to stochastic differential equations with piecewise continuous arguments (sepcas). the classical khasminskii-type theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations (sdes) without the linear growth condition by the use of the lyapunov functions. however,there is no such result for sepcas. firstly,this paper shows sepcas which have nonexplosion global solutions under local lipschitz condition without the linear growth condition. then the convergence in probability of numerical solutions to sepcas under the same conditions is established. finally,an example is provided to illustrate our theory. copyright © 2012 minghui song and ling zhang.
آدرس department of mathematics,harbin institute of technology, China, department of mathematics,harbin institute of technology,harbin 150001,china,institute of mathematical sciences,daqing normal university, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved