>
Fa   |   Ar   |   En
   A new DG multiobjective optimization method based on an improved evolutionary algorithm  
   
نویسنده sheng w. ,liu k.-y. ,liu y. ,meng x. ,song x.
منبع journal of applied mathematics - 2013 - دوره : 2013 - شماره : 0
چکیده    A distribution generation (dg) multiobjective optimization method based on an improved pareto evolutionary algorithm is investigated in this paper. the improved pareto evolutionary algorithm,which introduces a penalty factor in the objective function constraints,uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. the proposed algorithm is utilized to the optimize dg injection models to maximize dg utilization while minimizing system loss and environmental pollution. a revised ieee 33-bus system with multiple dg units was used to test the multiobjective optimization algorithm in a distribution power system. the proposed algorithm was implemented and compared with the strength pareto evolutionary algorithm 2 (spea2),a particle swarm optimization (pso) algorithm,and nondominated sorting genetic algorithm ii (ngsa-ii). the comparison of the results demonstrates the validity and practicality of utilizing dg units in terms of economic dispatch and optimal operation in a distribution power system. © 2013 wanxing sheng et al.
آدرس power distribution research department,china electric power research institute,no. 15,xiaoying east road,haidian district,qinghe, China, power distribution research department,china electric power research institute,no. 15,xiaoying east road,haidian district,qinghe, China, power distribution research department,china electric power research institute,no. 15,xiaoying east road,haidian district,qinghe, China, power distribution research department,china electric power research institute,no. 15,xiaoying east road,haidian district,qinghe, China, power distribution research department,china electric power research institute,no. 15,xiaoying east road,haidian district,qinghe, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved