>
Fa   |   Ar   |   En
   Optimal bounds for neuman means in terms of harmonic and contraharmonic means  
   
نویسنده he z.-y. ,chu y.-m. ,wang m.-k.
منبع journal of applied mathematics - 2013 - دوره : 2013 - شماره : 0
چکیده    For a,b > 0 with a≠b,the schwab-borchardt mean s b (a,b) is defined as s b (a,b) = {√b2- a2/c o s-1 (a/b) if a < √b2- a2cosh-1 (a/b) if a > b. in this paper,we find the greatest values of α 1 and α2 and the least values of β1 and β2 in [0,1/2] such that h (α1 a+(1 - α1) b,α1b+(1 - α1) a) < sah (a,b) < h (β1 a+(1-β1) b,β1 b+(1-β1) a) and h (α2a+(1- α2) b,α2 b+(1-α2) a) < sha (a,b) < h (β2 a+(1 - β2) b,β2 b+(1 - β2) a). similarly,we also find the greatest values of α3 and α4 and the least values of β3 and β4 in [1/2,1] such that c (α3 a+(1 - α3) b,α3 b+(1 - α3) a) < sca (a,b) < c (β3 a+(1 - β3) b,β3 b+(1 - β3) a) and c (α4 a+(1 - α4) b,α4 b+(1 - α4) a) < sac (a,b) < c (β4 a+(1 - β4) b,β4 b+(1 - β4) a). here,h (a,b) = 2ab/(a + b),a(a,b) = (a + b)/2,and c(a,b) = (a2+b2)/(a + b) are the harmonic,arithmetic,and contraharmonic means,respectively,and sha (a,b) = sb(h,a),sah (a,b) = sb (a,h),sca (a,b) = sb (c,a),and sac (a,b) = sb (a,c) are four neuman means derived from the schwab-borchardt mean. © 2013 zai-yin he et al.
آدرس department of mathematics,huzhou teachers college, China, school of mathematics and computation science,hunan city university, China, school of mathematics and computation science,hunan city university, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved