|
|
predictive modeling for forecasting air quality index (aqi) using time series analysis
|
|
|
|
|
نویسنده
|
pant alka ,joshi ramesh chandra ,sharma sanjay ,pant kamal
|
منبع
|
avicenna journal of environmental health engineering - 2023 - دوره : 10 - شماره : 1 - صفحه:38 -43
|
چکیده
|
Air pollution is a widespread problem in india. the study focuses on forecasting the air quality index (aqi) using time series modeling techniques for the most polluted area of dehradun city in uttarakhand state, india. the train test approach of machine learning and akaike information criterion (aic) have been used on the monthly data of five years to select the best auto-regressive model. using the auto-correlation functions (acf and pacf) and the seasonality component in the time-series dataset, a seasonal auto-regressive moving average (arma) model with its minimum aic has been chosen to forecast the aqi. this model is also validated by comparing its predicted values with the actual values of aqi. the results showed that the seasonal arma model of (1,0,0)(1,0,0)12 could forecast aqi based on a stationary dataset. the research also indicates that the asthma patients of the himalayan drugs-isbt region may experience more health effects, especially in winter, due to poor air quality. the model can be helpful for a scientist and the government to take precautionary measures in advance.
|
کلیدواژه
|
air quality index ,time series analysis ,auto-correlation ,seasonal arma ,forecasting
|
آدرس
|
graphic era hill university, school of computing, india, graphic era (deemed to be university), school of engineering, department of computer science and engineering, india, shri guru ram rai university, school of computer applications and information technology, department of computer applications, india, graphic era hill university, school of vocational studies, india
|
پست الکترونیکی
|
kpant@gehu.ac.in
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|