>
Fa   |   Ar   |   En
   توسعه و ارزیابی سامانه طبقه بندی نخود بر اساس فناوری پردازش تصویر مرئی و شبکه عصبی مصنوعی  
   
نویسنده سلام سمیه ,خیرعلی پور کامران
منبع فناوري هاي جديد در صنعت غذا - 1400 - دوره : 9 - شماره : 2 - صفحه:181 -193
چکیده    قابلیت تشخیص رنگ، بافت، و شکل در فناوری پردازش تصویر منجر به توسعه سامانه های ماشین بینایی در حوزه های مختلف کشاورزی، صنایع تبدیلی، و صنعت شده است. وجود دانه های با ظاهر نامناسب و ناخالصی ها در نخود و تاثیر مستقیم کیفیت ظاهری محصول بر بازپسندی آن، ضرورت درجه بندی این محصول را نشان می دهد. هدف از تحقیق حاضر تشخیص نخود با ظاهر نامناسب و ناخالصی از نخود با ظاهر مناسب با توسعه یک سامانه ماشین بینایی می باشد. تعداد 270 تصویر شامل تصویر 54 نمونه نخود با ظاهر مناسب و 36 نمونه از هر کدام از انواع نخود با ظاهر نامناسب (چروکیده، سبز رنگ، قهوه ای رنگ، و لپه) و مواد خارجی (سنگ و ساقه) تهیه گردید. پس از تهیه تصاویر نمونه ها، با استفاده از یک الگوریتم پردازش تصویر، مراحل پیش پردازش و استخراج ویژگی به صورت خودکار انجام شده و ویژگی های مختلف رنگ، بافت و شکل استخراج گردید. الگوریتمی برای انتخاب ویژگی های کارا از بین ویژگی های استخراجی توسعه یافت. ویژگی های کارا توسط روش شبکه عصبی مصنوعی با دقت کلی 91.9% طبقه بندی شدند. دقت تشخیص نمونه های نخود مطلوب، چروکیده، لپه، نارس، قهوه ای، و ناخالصی های ساقه و سنگ، به ترتیب برابر 98.1، 83.3، 100.0، 91.7، 97.2، 77.8، و 97.2% بود. با استفاده از سامانه توسعه یافته می توان محصول نخود را با دقت بالا و هزینه پایین درجه بندی نموده تا پس از جداسازی ناخالصی ها، نخود مرغوب و نامرغوب را از هم جدا و برای مصارف مختلف روانه بازار نمود.
کلیدواژه نخود، رنگ، بافت، درجه‌بندی، پردازش تصویر
آدرس دانشگاه ایلام, دانشکده کشاورزی, گروه مهندسی مکانیک بیوسیستم, ایران, دانشگاه ایلام, دانشکده کشاورزی, گروه مهندسی مکانیک بیوسیستم, ایران
پست الکترونیکی k.kheiralipour@ilam.ac.ir
 
   Development and evaluation of chickpea classification system based on visible image processing technology and artificial neural network  
   
Authors Salam Somayeh ,Kheiralipour Kamran
Abstract    The ability to recognize color, texture, and shape in image processing technology has led to the development of machine vision systems in various fields of agriculture, conversion industries, and industry. The existence of impurities and seeds with an unsuitable appearance in chickpeas and the direct effect of the appearance quality of the product on its marketability, shows the need for grading this product. The aim of the present study was to distinguish impurities and chickpeas with an inappropriate appearance from chickpeas with a suitable appearance by developing a machine vision system. Totally 270 images including 54 samples of chickpeas with suitable appearance and 36 samples of each type of chickpeas with inappropriate appearance (wrinkled, green, brown, and split) and foreign materials (stone and stem) were prepared. After preparing the sample images, the preprocessing and feature extraction steps were performed automatically and different color, texture and shape properties were extracted by developing and using an image processing algorithm. An algorithm was developed to select efficient features from the extracted features. Efficient features were classified by the artificial neural network method with total accuracy of 91.9%. The detection accuracy for desirable, wrinkled, cotyledon, immature, and brown chickpea and stem and stone impurities was equal to 98.1, 83.3, 100.0, 91.7, 97.2, 77.8, and 97.2% respectively. Using the developed system, the chickpea product can be graded with high accuracy and low cost, so that after separating the impurities, the desirable and undesirable chickpeas can be separated and sent to the market for different uses.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved