|
|
طراحی سیستم توصیهگر محصولات شوینده بر مبنای تحلیل احساسات فازی
|
|
|
|
|
نویسنده
|
بهروان مجید ,معتدل محمدرضا ,طلوعی اشلقی عباس ,رادفر رضا
|
منبع
|
پژوهش هاي نوين در تصميم گيري - 1400 - دوره : 6 - شماره : 4 - صفحه:35 -53
|
چکیده
|
امروزه شبکههای اجتماعی به عنوان محلی برای ارائه نظرات کاربران نسبت به موضوعات مختلف از جمله محصولات مصرفی تبدیل شدهاست و این نظرات به منبعی ارزشمند برای تحلیل احساسات و استخراج انتظارات مشتریان از محصولات تبدیل شدهاست. این موضوع فرصت مناسبی را برای شرکتها جهت بازطراحی محصولات خود بر اساس نظرات کاربران فراهم کردهاست. در این پژوهش برای ارائه توصیه به واحدهای طراحی محصولات شوینده، از تحلیل احساسات مشتریان و مصرفکنندگان این محصولات در شبکههای اجتماعی استفاده کردهایم. بیش از 4200 مورد از نظرات کاربران شبکه اجتماعی توئیتر بر اساس موضوع پژوهش در سال 2019 استخراج و در مرحله پیشپردازش متون پالایش و تگگذاری شدند و پس از طی این مرحله با بکارگیری منطق فازی و مدلیابیموضوعی به تحلیل احساسات پرداخته شده است. مدلیابی موضوعی را به منظور یافتن ویژگیهای مورد اشاره در نظرات برای داشتن رویکردی بهتر در واحدهای طراحی محصولات بکار بردیم و از منطق فازی برای استحصال میزان قطبیت نظرات به 5 دسته بسیارمثبت، مثبت، خنثی، منفی و بسیار منفی استفاده کردهایم. نتایج بدستآمده از تحلیل احساسات در مدل پژوهش با استفاده از ماتریس آشفتگی مورد ارزیابی قرار گرفت و صحت 86.15% حاصل شد.در این پژوهش از زبان و کتابخانه های پایتون برای جمعآوری، پالایش و تحلیل اطلاعات استفاده گردید.
|
کلیدواژه
|
تحلیل احساسات، سیستم توصیهگر، مدلیابی موضوعی، هوشتجاری، منطق فازی
|
آدرس
|
دانشگاه آزاد اسلامی واحد تهران مرکزی, گروه مدیریت فناوری, ایران, دانشگاه آزاد اسلامی واحد تهران مرکزی, گروه مدیریت صنعتی, ایران, دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران, گروه مدیریت صنعتی, ایران, دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران, گروه مدیریت صنعتی, ایران
|
|
|
|
|
|
|
|
|
|
|
Designing a Recommendation System of Detergent Products with Fuzzy Sentiment Analysis Approach
|
|
|
Authors
|
behravan majid ,Motadel Mohammadreza ,Tolui Eshlaghi Abbas ,Radfar Reza
|
Abstract
|
Today, social media has become a place for users to comment on various topics, including consumer products, and these comments have become a valuable resource for sentiments analyzing and extracting customer expectations of products. This subject provides companies with a good opportunity to redesign their products based on user feedback. In this study, to provide recommendations to the design units of detergent products, we used sentiment analysis of customers and consumers of this products on social media. More than 4200 tweets were extracted from Twitter in 2019 based on the research topic and refined and tagged during the preprocessing of the texts. Afterwards, we analyzed the emotions using fuzzy logic and topic modeling. We have used topic modeling to find the features mentioned in the comments for a better approach in the design units, and fuzzy logic to obtain the degree of polarity of ideas into 5 categories: very positive, positive, neutral, negative and very negative. We used confusion matrix for evaluating research model and an accuracy of 86.15 % has been recorded.In this research Python libraries are used for data gathering, cleansing and analysis.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|