>
Fa   |   Ar   |   En
   prediction of structural response for hsscc deep beams implementing a machine learning approach  
   
نویسنده mohammadhassani mohammad ,zarrini mahdi ,noroozinejad farsangi ehsan ,khadem gerayli neda
منبع international journal of coastal, offshore and environmental engineering - 2018 - دوره : 3 - شماره : 1 - صفحه:35 -43
چکیده    High strength concrete (hsc) is a complex type of concrete, that meets the combination of performance and uniformity at the same time. this paper demonstrates the use of artificial neural networks (ann) to predict the deflection of high strength reinforced concrete deep beams, which are one of the main elements in offshore structures. more than one thousand test data were collected from the experimental investigation of 6 deep beams for the case of study. the data was arranged in a format of 10 input parameters, 2 hidden layers, and 1 output as network architecture to cover the geometrical and material properties of the high strength self-compacting concrete (hsscc) deep beam. the corresponding output value is the deflection prediction. it is found that the feed forward back-propagation neural network, 15 & 5 neurons in first and second, trainbr training function, could predict the load-deflection diagram with minimum error of less than 1% and maximum correlation coefficient close to 1.
کلیدواژه deep beam ,artificial intelligence ,deflection ,hsscc
آدرس road, housing & urban development research center (bhrc), seismology engineering & risk department, iran, islamic azad university, astanee-ashrafiye branch, iran, graduate university of advanced technology, department of earthquake engineering, iran, road, housing and urban development research center (bhrc), technology management, technology transfer, master of science, transportation research institute, iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved