|
|
مروری بر تحلیل دینامیکی و مدلسازی عددی گسلها با استفاده از روش اجزای مرزی
|
|
|
|
|
نویسنده
|
هوشیار یادگار ,عشایری ایمان ,کمالیان محسن
|
منبع
|
علوم و مهندسي زلزله - 1401 - دوره : 9 - شماره : 2 - صفحه:1 -16
|
چکیده
|
یکی از روش های عددی در مکانیک محیط های پیوسته، روش المان مرزی (bem) است. در این روش معادلات دیفرانسیلی حاکم به معادلات انتگرالی تبدیل و روی مرز مسئله اعمال خواهند شد. سپس مرز به قطعات مرزی تقسیم می شود و انتگرال گیری عددی بر روی المان های مرزی انجام می شود که از حل آن می توان به جواب یکتای مسئله رسید. روش المان مرزی را می توان بهراحتی بر روی مرزهای با هندسه پیچیده به کار برد. روش المان مرزی یا معادله انتگرال مرزی (biem) یکی از روشهای مدلسازی عددی است که کاربرد زیادی در شبیه سازی عددی دینامیک گسل ها دارد؛ نتایج آن دید وسیعی از فیزیک گسیختگی زلزله فراهم می کند. در این مقاله بهمرور مدلسازی عددی گسل به روش المان مرزی پرداخته شده، و مطالعات انجام شده در زمینه مدلسازی عددی گسل به روش المان مرزی مورد بررسی قرار گرفته است. در نهایت نتایج بهدستآمده به اینگونه است که روش المان مرزی برای مسائل دارای مرزهای پیچیده همانند هندسه گسل و مسائل با مرزهای بی کران مناسب است. همچنین می توان با استفاده از مدلسازی عددی به روش المان مرزی، لغزش رخ داده روی گسل و تغییر شکل های سطحی را بهخوبی پیش بینی کرد.
|
کلیدواژه
|
گسل، روش المان مرزی، لغزش گسل، معادله انتگرال مرزی
|
آدرس
|
دانشگاه رازی, گروه مهندسی عمران, ایران, دانشگاه رازی, گروه مهندسی عمران, ایران, پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله, گروه مهندسی ژئوتکنیک لرزهای, ایران
|
پست الکترونیکی
|
kamalian@iiees.ac.ir
|
|
|
|
|
|
|
|
|
analysis and numerical modeling of faults using the boundary element method
|
|
|
Authors
|
hoshyar yadegar ,ashayeri iman ,kamalian mohsen
|
Abstract
|
one of the numerical methods in the mechanics of continuous environments is the boundary element method. in this method, the governing differential equations will be converted to integral equations and applied to the problem boundary. then the boundary is divided into boundary parts and numerical integration is performed on the boundary elements, from the solution of which a single solution of the problem can be obtained. in the boundary element method, the partial differential equations defined within a space are converted to integral equations at the boundaries of that space, which reduces one dimension of the problem. for example, an elastodynamic problem defined in a twodimensional space is replaced by an integral equation problem defined at its boundaries that has one dimension. if the problem defined in a threedimensional space is replaced by a twodimensional integral equation problem. finally, the integral equations will be solved numerically by dividing the boundaries into a network of finite element discrete elements. the boundary element method can be easily applied to borders with complex geometry. boundary element method or boundary integral equation (biem) is one of the numerical modeling methods that have many applications in numerical simulation of fault dynamics. its results provide a broad view of the physics of earthquake rupture. to solve twodimensional problems, the numerical technique of the boundary element method has been widely used. the boundary element method has been used to model the behavior of faults of overlapping centers, the growth of junction assemblies, veins and seismic analysis of topographic features. one form of bem is based on separation, which is called the displacement discontinuity method. the theory of detachments in elastic materials has been widely used for more than half a century to evaluate the displacement, stress and strain fields around faults. by integrating green’s functions, the displacement field around the discontinuity surface can be calculated. these displacement fields are the navier equations that are the governing equations of linear elastic theory. strain components are obtained from the spatial derivatives of the displacement components, and the stress components can be calculated using hooke’s law for homogeneous and homogeneous elastic materials. therefore, the mathematical tool of detachment theory is able to calculate the displacement, stress and strain fields around faults in halfelastic space, but it is less accurate compared to geophysical data. in this paper, numerical modeling of faults using the boundary element method has been reviewed, and studies conducted in the field of numerical modeling of faults using the boundary element method have been reviewed. finally, the results show that the boundary element method is suitable for problems with complex boundaries such as fault geometry and problems with infinite boundaries. it is also possible to predict slip on the fault and surface deformation using numerical modeling using the boundary element method. the results of numerical modeling of the fault using the boundary element method and comparing these results with the observed values show that the boundary element method is a suitable method for predicting issues such as slip distribution on the fault, surface displacement and slope instability. also, the boundary element method is a suitable method for predicting the location of smaller and secondary faults. therefore, it can be said that the boundary element method is a powerful tool for numerical modeling of earthquake or fault rupture dynamics. in the articles studied in this study, the slip distribution at the fault surface has been determined using the inversion of surface displacements resulting from the main earthquake. if aftershocks also cause surface displacements, then as a suggestion for future research, the inversion of surface displacements caused by aftershocks can also be used to determine the secondary slips created on the fault surface.
|
|
|
|
|
|
|
|
|
|
|
|
|