>
Fa   |   Ar   |   En
   بررسی عددی رفتار اتصال صلب فلنجی با عمق کاهش یافته و فیوز قابل تعویض  
   
نویسنده مرادی گروسی الله رضا ,تحملی رودسری مهرزاد ,حسینی هاشمی بهرخ
منبع علوم و مهندسي زلزله - 1400 - دوره : 8 - شماره : 1 - صفحه:65 -76
چکیده    در اتصالات rbs به دلیل تغییر شکل‌های پلاستیک قابل‌توجه پس از وقوع زلزله‌های متوسط و قوی خسارت در مقطع کاهش یافته متمرکز می‌گردد، درحالی‌که تعویض آن پس از زلزله دشوار است. هدف این مقاله بررسی عددی اتصال تیر با عمق کاهش یافته به‌عنوان یک فیوز قابل تعویض است. در این راستا مدل های عددی در نرم‌افزار المان محدود آباکوس برای هر سه نوع اتصال صلب معمول با مقطع کاهش یافته در بال (rbs)، فیوز قابل تعویض با مقطع کاهش یافته در بال (rbs-f) و فیوز قابل تعویض با مقطع کاهش یافته در جان (rws-f)، مطابق تست های آزمایشگاهی قبلی، مدل‌سازی و بررسی شدند. نتایج بیش از 28 تحلیل عددی نشان داد که در نمونه‌های rbs و rbs-f با افزایش سایز تیر، شکل‌پذیری کاهش می‌یابد. درحالی‌که برای نمونه rws-f نه‌تنها با تغییر سایز تیر شکل‌پذیری ثابت می‌ماند بلکه شکل‌پذیری آن به‌طور محسوسی نسبت به دو نمونه دیگر بیشتر است، گرچه مقاومت نهایی آن نسبت به دو نمونه دیگر کمتر است. با افزایش ضخامت جان و اساس مقطع پلاستیک آن، می‌توان به مقاومت نهایی برابر با نمونه‌های دیگر دست یافت؛ بنابراین نمونه rws-f اصلاح شده می‌تواند جایگزینی مناسب برای اتصالات rbs باشد.
کلیدواژه قاب مقاوم خمشی فولادی، اتصال صلب، فیوز قابل تعویض، تیر با مقطع کاهش یافته جان، تیر با مقطع کاهش یافته بال
آدرس دانشگاه آزاد اسلامی واحد سنندج, گروه عمران, ایران, دانشگاه آزاد اسلامی واحد کرمانشاه, گروه عمران, ایران, پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله, پژوهشکده مهندسی سازه, ایران
 
   Numerical Evaluation of Rigid Connection with Reduced Depth Section and Replaceable Fuse  
   
Authors Moradi Garoosi AllahReza ,TahamouliRoudsari Mehrzad ,Hosseini Hashemi Behrokh
Abstract    Brittle failure can prevent structural connections from reaching their peak performance. It is therefore considered as one of the most destructive forms of failure. The prevalence of different failure in rigid connections of steel frames in the aftermath of the Northridge and Kobe earthquakes brought the performance of these connections under question. Research into rigid connections with complete penetrating welding revealed that it is highly probable for the welds to undergo premature brittle failure at low drifts. To address this problem, the use of Reduced Beam Sections (RBS) was recommended by the scientific community after the Northridge earthquake. In this connection, the beam’s flanges are cut (reduced) so that it can take on the form of a fuse, making it possible for the plastic hinge to be driven toward the inside of the beam, thereby preventing the panel zone from failing. RBSs, which are categorized as “prequalified connections”, have been the subject of extensive investigations and have suitable energy absorption and ductility under cyclic loadings. They are not, nonetheless, without flaws and are accompanied by problems such as the need for replacement after average or severe earthquakes due to severe inelastic deformations in the reduced area. This problem is compounded by the connection of secondary beams to primary beams in the ceiling of the structures in which they are used. The objective of this investigation is the numerical evaluation of RBS connections with replaceable fuses. Numerical simulations on three models – namely, a conventional reduced beam section connection (RBS), a reducedflange connection with a replaceable fuse (RBSF), and a reducedweb connection with a replaceable fuse (RWSF) – were carried out using ABAQUS, with material and geometric nonlinearities having been considered. Also, the materials of the columns, beams, and plates, stiffeners, doubler and continuity plates, seat plates, and bolts have been defined based precisely on experimental data. Loading and support conditions of the numerical models were the same as those of the experimental samples. In the numerical models, the bolts were first prestressed to a sufficient degree. Then, lateral cyclic loading was applied to the beam of each model. The hysteretic curves of the numerical models are in good agreement with those of the experimental samples, indicating that the numerical models can reliably be used for the evaluation of other sections. Seven different profiles were selected from IPB sections (IPB140 to IPB340) for the beam. Suitable columns and endplates were designed for every beam size. For every set, three RBS, RBSF, RDSF, and RWSFR models were constructed, bring the total analyzed models to 28. The dimensions of the RWS model were selected so that its plastic section modulus would be the same as that of the RBS sample. Similar to the tests, the analyses continued until a draft of 8% and the hysteretic momentrotation diagram of each sample was obtained. Since in tall buildings beams and columns with variable dimensions are used in the experiment was carried out for beams and columns with one size, performing extensive numerical analyses can offer a better comparison of the performance reduceddepth sections and reducedflange sections. The results of more than 28 numerical analyses showed that in the RBS and RBSF models, increasing the size of the beam reduces ductility. However, for the RWSF sample, not only does increasing the size of the beam maintains the beam’s ductility, it also keeps it, noticeably, above those of the other two samples. The ultimate strength of the sample, however, is less than the other two samples. By increasing the web’s thickness and its plastic section modulus, an ultimate strength on par with those of the other samples can be achieved. Therefore, the modified RWSF sample can be a suitable replacement for RBS connections.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved