>
Fa   |   Ar   |   En
   ارزیابی عملکرد سازه‌های قاب خمشی فولادی متوسط و ویژه تحت آتش پس از زلزله  
   
نویسنده گرامی محسن ,میرزایی پوریا
منبع علوم و مهندسي زلزله - 1398 - دوره : 6 - شماره : 4 - صفحه:87 -106
چکیده    زلزله های شدید ممکن است باعث وقوع آتش سوزی‌های گسترده در سازه‌ها شوند. در شرایط پس از زلزله عواملی چون بروز تغییر مکان های پسماند در طبقات سازه، افزایش شدت آتش و آسیب دیدگی پوشش‌های ضد حریق مقاومت سازه را در برابر آتش کاهش می دهد. روش و الزامات طراحی لرزه ای سازه ها می تواند تاثیر زیادی بر مقاومت آنها در برابر آتش داشته باشد. در این مقاله، عملکرد سازه‌های قاب خمشی فولادی متوسط و ویژه تحت آتش پس از زلزله مورد مقایسه قرار می‌گیرد. برای این منظور، دو قاب خمشی فولادی 5 و 10 طبقه با پوشش ضد حریق در دو حالت ویژه و متوسط طراحی شده و تحت بارگذاری آتش استاندارد و آتش طبیعی در شرایط پس از زلزله قرار می‌گیرند. برای بارگذاری لرزه‌ای، دو سطح خطر زلزله طرح و زلزله خیلی شدید در نظر گرفته شده است. بر اساس نتایج به‌دست‌آمده، کاهش زمان مقاومت نمونه‌های قاب خمشی ویژه ناشی از اعمال بارهای لرزه‌ای با هر دو سطح خطر طرح کمتر از 21 درصد است. درحالی‌که زلزله‌های خیلی شدید باعث کاهش 75 درصدی در زمان مقاومت سازه‌های قاب خمشی متوسط می‌شوند، کاهش مقاومت این سازه‌ها در مقابل زلزله طرح کمتر از 19 درصد برآورد شده است. همچنین، نتایج تحلیل‌ها نشان می‌دهد که زلزله‌های خیلی شدید ممکن است باعث خرابی قاب‌های خمشی متوسط تحت آتش طبیعی پس از زلزله شوند، درحالی‌که قاب‌های خمشی ویژه قادر به تحمل بار آتش طبیعی در شرایط پس از زلزله می‌باشند.
کلیدواژه آتش پس از زلزله، آتش استاندارد، آتش طبیعی، سطوح عملکردی، قاب خمشی فولادی
آدرس دانشگاه سمنان, دانشکده‌ مهندسی عمران, ایران, دانشگاه سمنان, ایران
 
   Performance Assessment of Special and Intermediate Steel Moment Resisting Frames Under Post-Earthquake Fire  
   
Authors Gerami Mohsen ,Mirzaei Pouria
Abstract    Severe earthquakes may cause extensive fires in the structures. In the aftermath of earthquake, factors such as the occurrence of residual displacement in the structural stories (geometrical damage), increased fire intensity, and damage to the fireproofing (local damage) reduce structural resistance rating to fire. The methods and requirements of seismic design of structures can have a great impact on their fire resistance rating. In this paper, the performance of intermediate and special moment frames in postearthquake fire is compared.For this purpose, two 5 and 10 story frames are designed with two special and intermediate moment frame systems assuming they are in a high risk seismic zone. It is supposed that the beams and columns of the frames were protected by cement vermiculite spray fireproof material and accordingly the required thickness of the fireproofing is designed for two hours of fire resistance time. The 2Dframes model in Abaqus software for pushover heat transfer and thermalmechanical analyses. The compartment fire scenario is assumed to start from the second floor and extend to twofifths the height of the frames. For seismic loading, two hazard levels including the Design Base Earthquake (DBE) and the Maximum Credible Earthquake (MCE) are considered. The results of seismic and thermalmechanical analyses are combined to accurately consider the behavior of seismicallyloaded structures under fire loads. The fire resistance time of two sample steel moment frames for pre and postearthquake situations is compared to specify the reduction of fire resistance time due to the seismic effects. Two types of temperaturetime curves for natural fire in pre and postearthquake conditions are considered in relation to Eurocode 3 and fire extinguishing coefficients in postearthquake conditions. To determine the seismic damage (geometric and local damages) in the frames, the pushover method is employed in which the frames were first pushed by the first mode loading pattern to reach the target displacement of each hazard levels and then unloaded to return their elastic displacements and stay plastic displacements in the frame’s stories as the permanent displacements. The location of the plastic hinges in frame’s members at the target roof displacement is determined for each hazard levels. It is assumed that the fireproofing delaminate at these points as long as the depth of the beam cross section and directly exposed to the fire. The collapse of the structural systems under fire loads mainly occurs in three different modes: (i) yield of beam members, (ii) buckling of columns, and (iii) sideway collapse. The occurrence of the mentioned collapse mechanisms depends on the factors such as structural characteristics, fireproofing and geometric damage. The resistance time of the frames is the time at which any of the abovementioned collapse modes are detected.The results show that the failure mode of the undamaged and damaged special moment frames (SMF) under fire scenarios is yield of beam members. The fire resistant rating for undamaged SMF is about 21% less than damaged one. The reason for the low resistance time reduction is due to the redistribution forces in the damaged beam at high temperatures so that by eliminating the fireproofing at the two ends of the beam, the temperature at these points increases more rapidly than the beam center. By reducing the stiffness of the two ends of the beam, due to the redistribution of forces, the moment at these points will be reduced and added to the midbeam moment. Therefore, some of the lower two end resistance of the beam is compensated by its middle. The fire resistance time of Intermediate Moment Frames (IMF) after Design Base Earthquakes (DBE) is estimated to be 19% less than undamaged one. However, Maximum Credible Earthquakes (MCE) reduce the resistance time of these frames by 75% since at this hazard level the plastic hinges occurrence in some columns of such frames that results in damage to the column’s fireproofing. Also, the results of natural fire analyses show that after MCE earthquakes, the intermediate moment frames may collapse under natural fire, while special moment frames are able to withstand against the natural fire in postearthquake conditions.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved