>
Fa   |   Ar   |   En
   بهبود پاسخ لرزه ای دیوارهای حائل تسلیم نشده با استفاده از لایه های کاهنده فشار پلیمری  
   
نویسنده گل پذیر ایمان ,قلندرزاده عباس ,جعفری محمدکاظم
منبع علوم و مهندسي زلزله - 1398 - دوره : 6 - شماره : 1 - صفحه:53 -67
چکیده    در این مقاله عملکرد لایه های کاهنده فشار پلیمری در بهبود پاسخ دینامیکی دیوارهای حائل بررسی گردیده است. برای این منظور با انجام یک‌سری آزمایش میز لرزه  g1، رفتار دیوار حائل تسلیم نشده در دو حالت با و بدون لایه کاهنده فشار مدل‌سازی شده است. جهت ساخت لایه کاهنده فشار از فوم پلی‌یورتان (pu) استفاده شده که ضمن دارا بودن خصوصیات مکانیکی مناسب، برخی از محدودیت های مصالحی که در تحقیقات گذشته به‌کار برده شده را مرتفع می سازد. نتایج نشان می دهد که اجرای لایه کاهنده فشار از جنس فوم pu، نیروی افقی کل و دینامیکی وارد بر دیوار را به‌ترتیب به‌طور متوسط 30 و 45 درصد کاهش داده است. به‌ازای سختی بی‌بعد یکسان، این نوع فوم در مقایسه با مصالح مشابه نظیر فوم پلی‌استایرن انبساطی (eps) عملکرد بهتری را حاصل نموده است. همچنین ملاحظه گردیده که این‌ روش در تحریک های متوسط و شدید (دامنه شتاب ورودی بزرگ‌تر از  g0.24) بازدهی بیشتری دارد.
کلیدواژه آزمایش میز لرزه G1، دیوار حائل، فشار خاک، لایه کاهنده فشار لرزه ای، فوم پلی‌یورتان
آدرس دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران, گروه مهندسی عمران, ایران, دانشگاه تهران, دانشکده مهندسی عمران, ایران, پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله, پژوهشکده مهندسی ژئوتکنیک, ایران
 
   Seismic Response Improvement of Non-yielding Retaining Walls Using Polymeric Seismic Buffers  
   
Authors Ghalandarzadeh Abbas ,Golpazir Iman ,Jafari Mohammad Kazem
Abstract    Isolating the earth structures such as retaining walls, bridge abutments and buried pipes using the compressible materials is a novel solution to reduce the lateral earth pressure. In this technique, a layer of the compressible material with relatively small stiffness and limited thickness is implemented between the retaining wall and the backfill. This material acts as a seismic buffer due to its high compressibility, which absorbs the excess dynamic earth pressure significantly and attenuates the transmitted force to the retaining structure. Choosing the appropriate materials for construction of seismic buffers is based on their physical and mechanical properties as well as costeffective considerations. Most of the previous studies were focused on some specific materials such as expanded polystyrene (EPS) foam blocks and tire chips.This paper investigated the performance of polymeric seismic buffers made from Polyurethane (PU) foam on seismic response of nonyielding retaining walls. PU foam has appropriate properties and eliminates some of limitations on materials used in previous studies. The purpose of current study was to evaluate the applicability of PU foam as a new option for construction of seismic buffers with regard to its benefits. Hence, the behavior of nonyielding retaining walls was investigated in two conditions of with and without presence of the seismic buffers by conducting of a series of 1g shaking table tests. Seismic buffers included PU foam blocks, which were prepared by injecting foam into the cubic molds and spraying a certain amount of water on the specimens. A total of 13 tests were carried out on two models (retaining wall with and without seismic buffer) with changing the input base acceleration from 0.07g to 0.46g. The input motion was a horizontal sinusoidal excitation with a constant frequency of 3.6 Hz, which was applied for 10 seconds to the longitude direction of the model. The model responses including wall force and backfill soil displacement were measured during the excitation in each test.The results showed that the implementing seismic buffers made from PU foam reduce the total and dynamic horizontal wall forces on average of 30% and 45%, respectively. The force attenuation and backfill soil displacement have an inverse relationship to each other. For an equal Normalized compressible inclusion stiffness, this type of foam has a better performance in comparison with similar materials such as expanded polystyrene foam (EPS). Moreover, it is identifying that the force attenuation is not uniform along the height and the maximum attenuation occurs at the top of the retaining wall. The force distribution is triangular for static conditions. As the peak base acceleration is increased and the contribution of dynamic loads on upper elevations is increased, the force distribution becomes nonlinear. Therefore, at earthquakes with moderate to high intensity, the point of application of total horizontal force is transferred to the upper elevations of the retaining wall. Moreover, it is revealed that the efficiency of this technique increases for moderate to highintensity earthquakes (acceleration amplitude more than 0.24g).
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved