>
Fa   |   Ar   |   En
   شتاب دهنده دارای قابلیت بازپیکربندی برای اجرای کارآمد شبکه های عصبی  
   
نویسنده رحمانی نظام ,بیت اللهی حاکم ,دربانی پریا ,لطفی کامران پژمان
منبع علوم رايانشي - 1400 - دوره : 6 - شماره : 1 - صفحه:12 -21
چکیده    شبکه‌های عصبی عمیق به‌طور گسترده در کاربردهای هوش مصنوعی استفاده می‌شوند. انتقالات زیاد داده‌ها و تعداد محاسبات فراوان از ویژگی‌های اجرای این شبکه‌هاست. شبکه‌های عصبی از چندین لایه تشکیل شده‌اند که هر لایه نسبت به دیگر لایه‌ها اندازه منحصربه‌فرد و متفاوتی دارد. معمولاً ابعاد شتاب‌دهنده بر مبنای میانگینی از اندازۀ دسته‌ای از لایه‌ها، تعیین و ساخته می‌شود. هنگام اجرای برخی از لایه‌ها به دلیل عدم همپوشانی کامل ابعاد آن لایه با ابعاد پردازنده، تعدادی از منابع بی‌استفاده می‌مانند؛ یعنی با وجود نیاز به منابع محاسباتی بیشتر برای اجرای سریع‌تر محاسبات، اختلاف اندازه برخی لایه‌های شبکه عصبی با ابعاد شتاب‌دهنده، مانعِ دستیابی به حداکثر کارایی می‌شود. معماری پیشنهادی با استفاده از قابلیت بازپیکربندی امکان تغییر ابعاد پردازنده و نزدیک شدن به ابعاد لایۀ در حال اجرا را فراهم می‌کند. این معماری مشکل بی‌استفاده ماندن منابع را بهبود داده و در برخی موارد کاملاً برطرف می‌کند. بهبود بهره‌وری، سرعت محاسبات مدل گوگل‌نت را به‌طور متوسط 27.41% افزایش داده و دفعات خواندن از حافظه داخلی را حدود 23% نسبت به معماری پایه کاهش داده است. بهبودها در حالی است که سربار سخت‌افزاری بسیار کم و قابل چشم‌پوشی به سیستم اعمال شده است.
کلیدواژه شبکه عصبی عمیق، شتاب دهنده، مدل یادگیری ماشین، منابع بی استفاده، معماری بازپیکربند
آدرس پژوهشگاه دانش های بنیادی, پژوهشکده علوم کامپیوتر, ایران, دانشگاه علم و صنعت ایران, دانشکده کامپیوتر, ایران, دانشگاه علم و صنعت ایران, دانشکده کامپیوتر, ایران, پژوهشگاه دانش های بنیادی, پژوهشکده علوم کامپیوتر
پست الکترونیکی plotfi@ipm.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved