|
|
بهینهسازی سبد سهام با سنجههای مبتنی بر ارزش در معرض ریسک و محدودیت تعداد سهام با استفاده از الگوریتم فراابتکاری دستههای میگو (مطالعه موردی: بورس اوراق بهادار تهران)
|
|
|
|
|
نویسنده
|
موسوی سمیه السادات ,جعفری ندوشن عباسعلی ,سنگستانی مهسا ,مرادی مریم
|
منبع
|
چشم انداز مديريت مالي - 1401 - دوره : 12 - شماره : 39 - صفحه:147 -169
|
چکیده
|
همواره یکی از اساسیترین مسائل در تصمیمات سرمایهگذاری و بهینهسازی سبد سهام انتخاب یک سنجه مناسب برای بررسی ریسک و کاهش آن بوده است. در این مطالعه، به بررسی عملکرد الگوریتم دستههای میگو در بهینهسازی مدلهای میانگین-ارزش در معرض ریسک و میانگین-ارزش در معرض ریسک شرطی با در نظر گرفتن محدودیت تعداد سهام برای 35 شرکت فعال در بورس اوراق بهادار تهران پرداخته شدهاست. برای آموزش الگوریتم از روش پنجره غلتان در دورههای 1390 تا 1397 و 1391 تا 1398 استفاده شدهاست. همچنین نسبت شارپ و نسبت شارپ شرطی سبدهای حاصله مقایسهشده و معناداری تفاوت مدلها با آزمون ویلکاکسون ارزیابی شده است. یافتهها حاکی از آن است که بیشترین مقدار بازده با اختلاف کمی متعلق به مدل با سنجه ارزش در معرض ریسک شرطی میباشد. لیکن در هر دو روش، سبدهای متشکل از 5 سهم دارای عملکرد بهتری میباشند. با توجه به بررسیهای صورتگرفته در میان خروجیها و مقایسات میان ردهای، این نتیجه حاصل گردید که بین عملکرد مدلهای بهینهسازی مبتنی بر سنجهی ارزش در معرض ریسک و ارزش در معرض ریسک شرطی تفاوت معناداری وجود ندارد. همچنین محدودیت کاردینالیتی عملکرد مدل را بهبود میبخشد و سبد با تعداد سهام کمتر بازدهی بهتری از خود نشان میدهد.
|
کلیدواژه
|
ارزش در معرض ریسک شرطی، الگوریتم دستههای میگو، بهینهسازی سبد سهام، بورس اوراق بهادار تهران، محدودیت تعداد سهام
|
آدرس
|
دانشگاه میبد, گروه مهندسی صنایع, ایران, دانشگاه میبد, گروه مهندسی صنایع, ایران, دانشگاه میبد, ایران, دانشگاه میبد, ایران
|
پست الکترونیکی
|
stu.moradi@meybod.ac.ir
|
|
|
|
|
|
|
|
|
cardinality-constrained value at risk based portfolio optimization using krill herd metaheuristic algorithm(case study: tehran stock exchange)
|
|
|
Authors
|
mousavi somayeh ,jafari nodoushan abbasali ,sangestani mahsa ,moradi maryam
|
Abstract
|
one of the most fundamental problems in investment decisions and portfolio optimization is choosing a suitable measure for risk assessment and management. in this study, the performance of the krill herd algorithm is investigated for solving the mean-value at risk and mean-conditional value at risk portfolio optimization models considering the cardinality constraints, among 35 active companies in tehran stock exchange. for algorithm training, the roller window method has been used in 2011-2018 and 2012-2019. the sharpe ratio and the conditional sharpe ratio of the models have been evaluated and they are compared using the wilcoxon test. according to the numerical results, the mean–conditional value at risk model outperforms the mean–value at risk model in terms of the rate of return. also, the model’s profitability improved using cardinality constraint with 5 stocks. based on the empirical studies, we concluded that there is no significant difference between the performance of the value at risk and conditional value at risk based models. furthermore, the portfolios with lower number of stocks have shown the better performance.
|
|
|
|
|
|
|
|
|
|
|
|
|