>
Fa   |   Ar   |   En
   ارزیابی عملکرد نظام پیشنهادگر پایگاه‌های اطلاعاتی علمی  
   
نویسنده رفوآ شبنم ,سلیمی زهرا
منبع تعامل انسان و اطلاعات - 1400 - دوره : 8 - شماره : 2 - صفحه:53 -66
چکیده    زمینه و هدف: نظام‌های پیشنهادگر مقالات علمی، ابزاری سودمند برای کمک و تسریع در فرایند جستجوی اطلاعات هستند که مقالات را متناسب با نیاز پژوهشگران پیشنهاد می‌دهند. در حال حاضر، پایگاه‌های اطلاعاتی علمی نیز با استفاده از نظام‌های پیشنهادگر، مقالاتی را به کاربران پیشنهاد می‌دهند. از این رو، هدف اصلی این پژوهش ارزیابی عملکرد نظام پیشنهادگر سه پایگاه اطلاعاتی علمی الزویر و تیلور اند فرانسیس و گوگل اسکالر براساس میزان ربط موضوعی مقالات پیشنهادی در زمینه ذخیره و بازیابی اطلاعات از دیدگاه متخصصان کتابداری و فناوری اطلاعات می‌باشد. روش : پژوهش حاضر از نوع هدف، کاربردی بود که از روش ارزیابانه استفاده شد. نمونه پژوهش را سه پایگاه اطلاعات علمی الزویر و تیلور اند فرانسیس و گوگل اسکالر تشکیل دادند که دارای ابزار پیشنهاددهنده هستند. ذخیره و بازیابی اطلاعات به عنوان موضوع مورد جستجو انتخاب گردید. تعداد 10 کلیدواژه تخصصی مرتبط با موضوع ذخیره و بازیابی اطلاعات گزینش شد. پس از جستجوی هر کلیدواژه، نخستین مقاله بازیابی شده، ملاک بررسی قرار گرفت. سپس به ازای هر مقاله اول، 5 مقاله نخست پیشنهاد شده در هر یک از سه پایگاه مذکور استخراج شدند. داده‌ها از طریق مشاهده مستقیم و با استفاده از ابزار سیاهه وارسی محقق ساخته گردآوری شدند. اطلاعات کتابشناختی مقاله اول بازیابی شده در هر موضوع و هر پایگاه به همراه اطلاعات کتابشناختی 5 مقاله پیشنهاد شده جهت ارزیابی میزان ربط موضوعی در اختیار دو گروه از متخصصان کتابداری و فناوری اطلاعات قرار گرفت. نمونه پژوهش به روش نمونه‌گیری گلوله برفی انتخاب شدند. برای تجزیه و تحلیل داده‌ها از آمار توصیفی (فراوانی و درصد فراوانی) و استنباطی (آزمون فیشر و آزمون تی) استفاده شد. یافته‌ها: نتایج این پژوهش نشان داد که در بین سه پایگاه مذکور، پایگاه اطلاعاتی الزویر در مجموع نتایج مرتبط‌تری از دیدگاه متخصصان کتابداری و فناوری اطلاعات در زمینه ذخیره و بازیابی اطلاعات پیشنهاد می‌کنند که گوگل اسکالر و تیلور اند فرانسیس در رتبه‌های بعدی قرار دارند. در مجموع سه پایگاه، مرتبط ترین مقالات از نظر متخصصان موضوعی، مقالاتی بودند که در رتبه پنجم قرار داشتند.نتیجه‌گیری: در نهایت، مشاهده شد پایگاه اطلاعاتی الزویر، عملکرد مطلوب‌تری از نظر ارائه مقالات پیشنهادی مرتبط نسبت به دو پایگاه دیگر دارد. همچنین نتایج نشان داد، اختلاف معنی‌داری بین دیدگاه متخصصان فناوری اطلاعات با کتابداران در خصوص ربط مقالات پیشنهادی در زمینه ذخیره و بازیابی اطلاعات وجود دارد. به‌ طوری که، از دید متخصصان فناوری اطلاعات ربط مقالات پیشنهادی پایگاه‌های اطلاعاتی بیشتر است.
کلیدواژه نظام پیشنهادگر مقالات، سیستم‌های توصیه‌گر مقالات، نظام پیشنهادگر پایگاه اطلاعاتی، ربط موضوعی، پایگاه اطلاعاتی الزویر، پایگاه اطلاعاتی گوگل اسکالر، پایگاه اطلاعاتی تیلور اند فرانسیس
آدرس دانشگاه خوارزمی, ایران, دانشگاه خوارزمی, ایران
 
   Performance Evaluation of the Recommender System in Scientific Databases  
   
Authors refoua shabnam ,salimi zahra
Abstract    Background and Aim: Scientific article recommender system assists and advance information retrieval process by proposing and offering articles tailored to the researchers needs. The main purpose of this study is to evaluate the performance of the recommender System in three scientific databases. Method: This applied study is directed by the valuation method. Sample consisted of three scientific databases: Elsevier, Taylor Francis, and Google Scholar, which share recommendation tools. Information storage and retrieval was selected as the search subject. Ten specialized keywords related to the topic of information storage and retrieval were selected. After searching each key words, the first retrieved article was reviewed. Then, for each first article, the first 5 recommended articles were mined in each of the three mentioned databases. Data was collected through direct observation using a researchermade checklist. To evaluate subject relevance, bibliographic information of the first article retrieved in each subject and database along with the bibliographic information of 5 recommended articles was provided to two groups of librarians and IT professionals. Sample was selected by snowball method. Descriptive and inferential statistics were used to analyze the data.Results: Findings showed that among the databases, Elsevier recommends more relevant results from the perspective of IT professionals and librarians in the field of information storage and retrieval, with Google Scholar and Taylor Francis in the next ranks. In total, the most relevant articles in terms of subject experts were the articles that ranked fifth.Conclusion: To sum up, Elsevier performed better than the other two databases in terms of recommending related articles. Also, there is a significant difference between the views of librarians and IT professionals regarding the relevance of recommended articles in the field of information storage and retrieval. Thus, from the point of view of IT professionals, the significance of the recommended articles is greater.
Keywords Research Paper Recommender System ,Recommender Systems ,Database Recommender System ,Subject Relevance ,Scientific Databases ,Google scholar ,Elsevier
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved