>
Fa   |   Ar   |   En
   γ-Lie structures in γ-prime gamma rings with derivations  
   
نویسنده Arslan Okan ,Kandamar Hatice
منبع journal of algebra combinatorics discrete structures and applications - 2015 - دوره : 2 - شماره : 1 - صفحه:25 -37
چکیده    Let $m$ be a $gamma$-prime weak nobusawa $gamma $-ring and $dneq 0$ be a $k$-derivation of $m$ such that $kleft( gamma right) =0$ and $u$ be a $gamma$-lie ideal of $m$. in this paper, we introduce definitions of $gamma$-subring, $gamma$-ideal, $gamma$-prime $gamma$-ring and $gamma$-lie ideal of m and prove that if $unsubseteq c_{gamma}$, $char$m$neq2$ and $d^3neq0$, then the $gamma$-subring generated by $d(u)$ contains a nonzero ideal of $m$. we also prove that if $[u,d(u)]_{gamma}in c_{gamma}$ for all $uin u$, then $u$ is contained in the $gamma$-center of $m$ when char$mneq2$ or $3$. and if $[u,d(u)]_{gamma}in c_{gamma}$ for all $uin u$ and $u$ is also a $gamma$-subring, then $u$ is $gamma$-commutative when char$m=2$.
کلیدواژه Gamma ring ,γ-Prime gamma ring ,γ-Lie ideal ,k-Derivation ,γ-Commutativity
آدرس Adnan Menderes University, Faculty of Arts and Sciences, Department of Mathematics, Turkey, Adnan Menderes University, Faculty of Arts and Sciences, Department of Mathematics, Turkey
پست الکترونیکی hkandamar@adu.edu.tr
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved