>
Fa   |   Ar   |   En
   Codes over an infinite family of algebras  
   
نویسنده irwansyah . ,muchtadi-alamsyah intan ,muchlis ahmad ,barra aleams ,suprijanto djoko
منبع journal of algebra combinatorics discrete structures and applications - 2017 - دوره : 4 - شماره : 2 - صفحه:131 -140
چکیده    In this paper, we will show some properties of codes over the ring bk = fp[v1; : : : ; vk]=(v^2i = vi; 8i = 1; : : : ; k): these rings, form a family of commutative algebras over finite field fp. we first discuss about the form of maximal ideals and characterization of automorphisms for the ring bk. then, we define certain gray map which can be used to give a connection between codes over bk and codes over fp. using the previous connection, we give a characterization for equivalence of codes over bk and euclidean self-dual codes. furthermore, we give generators for invariant ring of euclidean self-dual codes over bk through macwilliams relation of hamming weight enumerator for such codes.
کلیدواژه Gray map ,Equivalence of codes ,Euclidean self-dual ,Hamming weight enumerator ,MacWilliams relation ,Invariant ring
آدرس institut teknologi bandung, algebra research group, Indonesia. universitas mataram, department of mathematics, Indonesia, institut teknologi bandung, algebra research group, Indonesia, institut teknologi bandung, algebra research group, Indonesia, institut teknologi bandung, algebra research group, Indonesia, institut teknologi bandung, combinatorial research group, Indonesia
پست الکترونیکی djoko@math.itb.ac.id
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved