|
|
کاربرد برآوردگرهای مقاوم در تعیین دادههای خارج از ردیف؛ مطالعه موردی: دادههای ژئوشیمیایی منطقه شاه سلیمان علی در استان خراسان جنوبی
|
|
|
|
|
نویسنده
|
گرانیان حمید ,خواجه میری زهرا
|
منبع
|
روشهاي تحليلي و عددي در مهندسي معدن - 1396 - شماره : 14 - صفحه:73 -85
|
چکیده
|
شناسایی و تعدیل نمونههای خارج از ردیف چند متغیره اولین مرحله برای تحلیل آماری دادههای اکتشافی محسوب میشود. کاهش بُعد دادهها به یک بُعد توسط فاصلهی نمونه از مرکز دادهها و مقایسه آن با یک حد آستانه کلید این کار محسوب میشود. در برآوردگرهای مقاوم از ماتریسهای موقعیت و پراکندگی به جای ماتریسهای میانگین و واریانس کواریانس برای محاسبه این فاصله استفاده میشود. بنابراین برای مقاوم بودن این فاصله زیر مجموعهی بهینه به جای کل دادهها برای محاسبهی این ماتریسها به کار می رود. چهار برآوردگر مقاوم mve، mcd، s و sd در این مقاله معرفی گردیدهاند. سپس از این برآوردگرها برای تعیین نمونههای خارج از ردیف 146 نمونهی رسوبات آبراههای منطقه شاه سلیمان علی در استان خراسان حنوبی و برای نتایج آنالیز 18 عنصر استفاده شده است. نتایج محاسبات نشان داده است که روش کلاسیک فاصله ماهالانوبیتس 7 نمونه و برآوردگرهای مقاوم mve، mcd، s و sd به ترتیب 23، 35، 20 و 34 نمونه را به عنوان دادهی پرت معرفی میکنند. همچنین آنالیز مولفههای اصلی در مد q نشان داده است که نمونههای خارج از ردیف با بارهای منفی خود را در مولفهی دوم و سایر نمونهها تقریباً با بارهای مثبت بالا در مولفهی اول خود را نشان میدهند. تفکیک جامعهی نمونههای خارج از ردیف از سایر نمونهها نیز در نمودار پراکندگی بارهای مولفهی دوم نسبت به مولفهی سوم امکانپذیر است. استفاده از ماتریسهای موقعیت و پراکندگی به دست آمده از برآوردگرهای مقاوم در روشهای آمارهای چند متغیره یکی دیگر از کاربردهای پیشنهادی مهم برآوردگرهای مقاوم در تجزیه و تحلیل دادههای اکتشافی محسوب میشوند.
|
کلیدواژه
|
برآوردگر مقاوم، داده خارج از ردیف، آمار چند متغیره، داده ژئوشیمیایی، منطقه شاه سلیمان علی
|
آدرس
|
دانشگاه صنعتی بیرجند, گروه معدن, ایران, دانشگاه شهید باهنر کرمان, گروه زمین شناسی, ایران
|
|
|
|
|
|
|
|
|
|
|
Application of Robust Estimators in Determining the Outlier Data; a Case Study: Geochemical Data of Shah Soliman Ali, South Khorasan Province
|
|
|
Authors
|
Geranian Hamid ,Khajeh Miri Zahra
|
Abstract
|
SummaryIdentification and modification of multivariate outlier data is the first step to analyze exploration data through multivariate statistics. A key to this problem is reducing the data dimension to one by the distance between the sample and central point of the data set and then by comparing it with a threshold. To calculate this distance, the location and scatter matrixes are used instead of the mean and variancecovariance matrixes in the robust estimators. Therefore, to maintain the robustness of distance, these estimators apply the optimal subset rather than the entire data matrix. This paper introduces four robust estimators namely the MVE, MCD, S and SD. Then these estimators are used to determine outlier data of 146 regional stream sediment samples of Shah Soliman Ali at South Khorasan province and also to analyze 18 elements. The results show that the Mahalanobis distance classical methods display 7 samples and robust estimators MVE, MCD, S and SD introduce 23, 35, 20 and 34 samples as outliers, respectively. The principal component analysis in Q mode also show that the outlier samples with negative loads and the other samples with approximately positive loads show themselves in the second and the third components, respectively. It is also possible to separate outlier data from the rest in the scatter plot of the loads of PC 2 vs the loads of PC 3. The use of the location and scatter matrixes done by robust estimators is another important application of these estimators in multivariate statistics methods of exploration data analysis. IntroductionHuman errors and changing nature of exploration data distribution are two main reasons in the creation of Outliers. The first step in the processing of the exploration data will be Identification and then modification of them. Existence of outliers is also caused the bias in the mean matrix and inflation in the variancecovariance matrix. So in this paper, we propose the use of robust estimators as one of the solutions and their performance is also evaluated. Methodology and ApproachesResults of the analysis of 18 elements to 146 stream sediments samples is used at the exploration region of Shad Soliman Ali as a data set. Four robust estimators such as MVE, MCD, S and SD have been also used to identify outlier data. And finally the results of the four estimator has been evaluated and compared with each other by PCA in Q mode. Results and ConclusionsFrom 146 samples, the MVE, MCD, S and SD robust estimators detected 23, 35, 20 and 34 as outlier data, respectively. Outlier samples also show up themselves with the negative loads on the PC2 and other samples with positive loads on the PC1. The population of the Outlier samples and the population of another samples are separated in the scatter plot of the PC2 loads vs the PC3 loads. So depending on the number of samples, one of these estimators can be used to identify outlier data.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|