>
Fa   |   Ar   |   En
   خوشه‌بندی مددجویان بهزیستی به‌منظور شناسایی هدفمند خانواده‌های تحت پوشش با استفاده از تکنیک داده‌کاوی  
   
نویسنده شکوهیار سجاد ,تولایی روح الله ,رجا نیلوفر ,مدرسی روناک
منبع مطالعات ناتواني - 1395 - دوره : 6 - شماره : 12 - صفحه:21 -27
چکیده    هدف: امروزه افزایش معضلات اجتماعی و ازدیاد مددجویان بهزیستی باعث شده که تکنیک های سنتی توانایی ترسیم وضعیت مشخصی از گروه های دریافت کنندهٔ خدمات را نداشته باشند. نبود دسته بندی مناسب از افراد باعث شده بهزیستی نتواند خدمات خود را با نیازهای افراد هم سو کند. تکنیک های خوشه بندی می توانند برای دست یابی به این رده بندی کمک شایانی کنند.روش بررسی: تحقیق حاضر از لحاظ نوع هدف کاربردی و از نظر روش اجرا توصیفیپیمایشی است. داده های استفاده شده مربوط به 4155 نفر از مددجویان بخش اجتماعی بهزیستی استان کردستان از سال 86 به بعد است. به علاوه برای پیاده سازی داده کاوی از مدل استاندارد crispdm استفاده شد.یافته ها: متناسب با یافته ها، چهار خوشه به دست آمد و یکی از خوشه ها (خوشهٔ 2) به عنوان خوشهٔ بهینه انتخاب شد. از میان ویژگی های بررسی شدهٔ شهرستان سنندج،گروه هدف معلولین،زنان، بی سوادان،گروه متاهلین، ساکنین شهر و بعد مستمری اول (یکم)، ویژگی هایی بودند که فراوانی بیشتری را در خوشهٔ بهینه داشتند. به علاوه وجود ارتباط بین دوبه دوی متغیرها بررسی و مشخص شد که به جز متغیرهای جنسیت و تحصیلات، ساکن شهر یا روستا و بعد مستمری، تحصیلات و ساکن شهر یا روستا ارتباط دوبه دویی بین سایر متغیرها وجود دارد.نتیجه گیری: باتوجه به یافته ها بهزیستی می تواند با تمرکز بیشتر در برطرف کردن نیازهای افراد با ویژگی های ساکن مناطق شهری سنندج، افزایش مستمری معلولیت، جنسیت زن، بی سوادی، متاهل بودن، خدمات خود را با نیازمندی های مددجویان هم راستا کند.
کلیدواژه سازمان بهزیستی، داده‌کاوی، الگوریتم‌های خوشه‌بندی، استاندارد crisp-dm
آدرس دانشگاه شهید بهشتی, دانشکده مدیریت و حسابداری, گروه مدیریت فناوری اطلاعات, ایران, دانشگاه شهید بهشتی, دانشکده مدیریت و حسابداری, گروه مدیریت فناوری اطلاعات, ایران, دانشگاه شهید بهشتی, دانشکده مدیریت و حسابداری, گروه مدیریت فناوری اطلاعات, ایران, دانشگاه شهید بهشتی, دانشکده مدیریت و حسابداری, گروه مدیریت فناوری اطلاعات, ایران
 
   Clustering of the State Welfare Organization of Iran’s Clients to Identify the Supported Families by Using Data Mining Techniques  
   
Authors Shokohyar Sajjad ,Tavallaee Roohollah ,Raja Niloofar ,Modarresi Roonak
Abstract    Background: In recent years public service has become one of the fastest growing sectors of the world economy and is widely recognized for its contribution to regional and national economic development. The exacerbation and growth of social problems and the increasing number of welfare clients has made the traditional techniques inefficient to find the exact and specific information about the needy. Insufficient data about the families and their needs besides the inappropriate categorization for future plans requires data analysis and implementation. To fulfill this important need, Clustering technique in data mining can be useful and helpful. So, this study aims to cluster the clients of State Welfare Organization of Iran so as to identify the supported families for responding the clients' needs in a better way.Methods: This paper follows a practical objective with a descriptivesurvey method of research. The Standard Model of CRISPDM is used to implement data mining. Data mining is the process of discovering the significance of user knowledge such as patterns from large amount of data stored in databases. Very appeal studies have employed data mining to identify the supported families in State Welfare Organization. Also, it is completely unique in Iran. In order to group, predict, recognize and satisfy the needs of the supported individuals, social data of clients of the State Welfare Organization of Iran in Kurdistan province were collected since 1384. Next, a database containing 4155 user rsquo;s data with seven attributes were used. The attributes include cities, number of persons supported by The State Welfare Organization, purpose groups, gender, place of living (city/village) attribute, educational degree and finally marriage status.Results: By using Rapid Minder software and applying random clustering technique, four clusters were achieved and cluster 2 was chosen as the optimal cluster. Optimal cluster is the biggest cluster containing more clients. The priority is regarded for the residents of Sanandaj city, the disabled, females, uneducated, the married, and the number of people supported by the State Welfare Organization=1. Furthermore, in order to obtain the association between attributes, Chisquare test was applied. We find that all of them have pairwise dependency (p<0.05) except gender and educational degree, the number of persons supported by The State Welfare Organization and place of living (city/village) attribute, the educational degree and the place of living (city/village) attribute.Conclusion: According to the information obtained, The State Welfare Organization should pay more attention to the optimal cluster rsquo;s users. In the other words, it should focus on the clients living in Sanansaj, the disabled, the females, the uneducated, the married couples, the number of persons supported by the State Welfare Organization=1. Furthermore, after the implementation of clustering method, new State Welfare Organization of Iran rsquo;s clients can join the clusters with their attributes and it can help the State Welfare Organization to analyze their needs. Thus, due to the existing relationships between attributes, providing facilities based on one attribute can improve welfare based on the other attributes.
Keywords Welfare Organization ,data mining ,clustering algorithms ,Standard Model of CRISP-DM
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved