>
Fa   |   Ar   |   En
   بررسی عدم‌قطعیت مدل‌های شبکۀ عصبی مصنوعی و عصبی فازی در پیش بینی رواناب حوضۀ رودخانۀ بشار  
   
نویسنده منتصری حسین ,تابع بردبار مهدی ,ایاسه احمد ,خلیلی رضا
منبع اكوهيدرولوژي - 1402 - دوره : 10 - شماره : 4 - صفحه:529 -544
چکیده    در این پژوهش، به‏ منظور انتخاب مدل مناسب به منظور پیش‏بینی رواناب در حوضۀ رودخانۀ بشار، از مدل‏های داده‌محور شبکۀ عصبی مصنوعی از نوع پرسپترون چندلایه و شبکۀ عصبی فازی از سیستم استنتاج فازی سوگنو، به روش خوشه‏بندی کاهشی استفاده شد و تحلیل عدم قطعیت این مدل‏ها مورد بررسی قرار گرفت. داده‏های مورد استفاده در این پژوهش، شامل مقادیر ماهانۀ بارندگی و دمای متوسط در ایستگاه‏های باران‏سنجی و آبدهی متوسط ماهانۀ رودخانۀ بشار در ایستگاه هیدرومتری واقع در این حوضه از سال 1358 1359 تا 1397 1398 است. نتایج حساسیت‌سنجی روی تعداد نرون‏های لایۀ میانی در شبکۀ عصبی نشان داد بهترین تعداد نرون لایۀ میانی برای ترکیب ورودی بهینه برابر 13 است. بر اساس شاخص جذر میانگین مربعات خطا (rmse)، بهترین ترکیب متغیرهای ورودی برای شبیه‏سازی دبی رودخانه، در هر دو مدل شبکۀ عصبی و شبکۀ عصبی‌ فازی، ترکیب ورودی شامل دبی‏های متوسط رودخانه با یک ماه و دو ماه تاخیر به همراه مقادیر بارش ماهانه و بارش ماهانه با یک ماه و دو ماه تاخیر تعیین شد. به‏ منظور بررسی عدم قطعیت مدل‏ها، مدل‏های شبکۀ عصبی مصنوعی و عصبی‌ فازی در قالب یک نمونه‏گیری مونت‏کارلو به کار گرفته شدند. نتایج بررسی عدم قطعیت نشان داد به ازای متغیرهای ورودی تصادفی یکسان، میزان انحراف از معیار در خروجی مدل شبکۀ عصبی بیشتر از مدل شبکۀ عصبی فازی است. همچنین نتایج حاصل از محاسبۀ فاصلۀ اطمینان نشان می‏دهد بازۀ اطمینان برای مقادیر اطمینان مختلف، در شبکۀ عصبی فازی کوچک‏تر است، به ‏طوری ‏که در مدل شبکۀ عصبی با اطمینان 98 درصد خروجی در بازه (0.64 و 0.036) قرار دارد، اما در مدل عصبی‌ فازی با اطمینان 98 درصد، خروجی بین بازه (0.69 و 0.53) قرار دارد که نشان از عدم قطعیت بیشتر در نتایج مدل شبکۀ عصبی دارد.
کلیدواژه عدم قطعیت، مونت‌کارلو، شبکه عصبی مصنوعی، شبکه فازی، مدل بارش -رواناب، حوضۀ رودخانۀ بشار
آدرس دانشگاه یاسوج, گروه مهندسی عمران, ایران, دانشگاه یاسوج, دانشکدۀ مهندسی عمران, گروه مهندسی عمران, ایران, شرکت آب منطقه ‏ای استان کهگیلویه و بویراحمد, ایران, دانشگاه شهید بهشتی, گروه مهندسی محیط ‏زیست, ایران
پست الکترونیکی re_khalili@sbu.ac.ir
 
   uncertainty analysis of artificial neural network and fuzzy neural models in rainfall-runoff simulation of bashar river basin  
   
Authors montaseri hossein ,tabe-bordbar mehdi ,ayase ahmad ,khalili reza
Abstract    in this research, in order to select an appropriate model for predicting river flow in the bashar river basin, data-driven models including multilayer perceptron artificial neural network and fuzzy neural network from the sugeno fuzzy inference system were used using the clustering reduction method, and the analysis of uncertainty of these models was investigated.the data used in this research includes monthly values of rainfall and average temperature at rain gauge stations, as well as monthly average river discharge at the hydrological station located in the bashar river basin from the years 1979-1980 to 2018-2019. the sensitivity analysis results on the number of neurons in the hidden layer of the neural network showed that the optimal number of neurons in the hidden layer for the input combination is 13.based on the root mean square error (rmse) index, the best combination of input variables for simulating river flow in both the neural network and neural-fuzzy network models was determined to be the input combination consisting of average river discharge with one-month and two-month lag along with monthly rainfall values and monthly rainfall values with one-month and two-month lag.in order to investigate the uncertainty of the models, the artificial neural network and neural-fuzzy network models were employed in the form of monte carlo sampling.the results of the uncertainty analysis showed that, for the same random input variables, the deviation from the mean in the output of the neural network model is higher than that of the neural-fuzzy network model. additionally, the results obtained from calculating the confidence interval indicate that the confidence interval for different confidence levels is smaller in the neural-fuzzy network compared to the neural network. for example, in the neural network model with 98% confidence, the output is within the range of (0.64 and 0.36), whereas in the neural-fuzzy network model with 98% confidence, the output is between the range of (0.69 and 0.53). this indicates a higher level of uncertainty in the results of the neural network model.
Keywords uncertainty ,monte carlo method ,artificial neural network ,fuzzy network ,rainfall-runoff model ,bashar river basin
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved