>
Fa   |   Ar   |   En
   پیش‌بینی بارش ماهانه بر اساس سیگنال‌های بزرگ‌مقیاس اقلیمی با به‌کارگیری مدل‌های هوشمند و رگرسیون خطی چندگانه (مطالعه موردی: ایستگاه سینوپتیک سمنان)  
   
نویسنده محمدی مجید ,کرمی حجت ,فرزین سعید ,فرخی علیرضا
منبع اكوهيدرولوژي - 1396 - دوره : 4 - شماره : 1 - صفحه:201 -214
چکیده    سیگنال‏های بزرگ‏مقیاس اقلیمی شامل کنش‏های جوّی‌ ‏اقیانوسی، از عوامل اصلی موثر بر نوسانات اقلیمی زمین هستند و شاخص‏های بسیار مهمی در پیش‏بینی متغیرهای اقلیمی محسوب می‏شوند. در این پژوهش، با به‏کارگیری مدل‏های شبکۀ عصبی مصنوعی، شبکۀ فازی‌ ‏عصبی و رگرسیون خطی چندگانه، بارش ماه آتی در ایستگاه سینوپتیک سمنان پیش‏بینی شد. بدین‌منظور، از سری زمانی ماهانۀ بارش ایستگاه سینوپتیک سمنان و سیگنال‏های بزرگ‏مقیاس اقلیمی طی یک دورۀ 45 ساله (1966‌ 2010 میلادی) استفاده شد. سیگنال‏های موثر بر بارش ماه آتی با استفاده از تحلیل رگرسیون خطی گام‏به‏گام تعیین شدند و به‏عنوان متغیرهای ورودی در مدل‏های استفاده‌شده، انتخاب شدند. از 540 سری دادۀ ماهانه، 80 درصد ابتدایی برای آموزش و 20 درصد ‌باقی برای آزمون صحت‏سنجی مدل‏ها استفاده شدند. عملکرد مدل‏ها با معیارهای ارزیابی ضریب همبستگی، میانگین قدر مطلق خطا و ریشۀ میانگین مربعات خطا مقایسه شد. نتایج صحت‏سنجی نشان داد ضرایب همبستگی به‏دست‏آمده (829/0، 793/0 و 767/0) به‌ترتیب مربوط به مدل‏های شبکۀ عصبی مصنوعی، شبکۀ فازی‌ ‏عصبی و رگرسیون خطی چندگانه‌اند. بر‌اساس نتایج این تحقیق، می‏توان برای پیش‏بینی بارش ماه آتی ایستگاه سینوپتیک سمنان، به‌ترتیب از مدل‏های شبکۀ عصبی مصنوعی، شبکۀ فازی‌ ‏عصبی و رگرسیون خطی چندگانه استفاده کرد.
کلیدواژه بارش ماهانه ,سیگنال‏های بزرگ‏مقیاس اقلیمی ,شبکۀ عصبی مصنوعی ,شبکۀ فازی‌ ‏عصبی ,رگرسیون خطی چندگانه
آدرس دانشگاه سمنان, دانشکدۀ مهندسی عمران, گروه مهندسی آب و سازه های هیدرولیکی, ایران, دانشگاه سمنان, دانشکدۀ مهندسی عمران, گروه مهندسی آب و سازه های هیدرولیکی, ایران, دانشگاه سمنان, دانشکدۀ مهندسی عمران, گروه مهندسی آب و سازه های هیدرولیکی, ایران, دانشگاه سمنان, دانشکدۀ مهندسی عمران, گروه مهندسی آب و سازه های هیدرولیکی, ایران
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved