>
Fa   |   Ar   |   En
   a cnn-lstm-based approach for classification and quality detection of rice varieties  
   
نویسنده mavaddati samira ,razavi mohammad
منبع journal of ai and data mining - 2024 - دوره : 12 - شماره : 4 - صفحه:473 -485
چکیده    Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance of solving these problems cannot be overstated. by improving the classification and quality detection techniques, it can be ensured the safety and quality of rice crops, and improving the productivity and profitability of rice cultivation. however, such techniques are often limited in their ability to accurately classify rice grains due to various factors such as lighting conditions, background, and image quality. to overcome these limitations a deep learning-based classification algorithm is introduced in this paper that combines the power of convolutional neural network (cnn) and long short-term memory (lstm) networks to better represent the structural content of different types of rice grains. this hybrid model, called cnn-lstm, combines the benefits of both neural networks to enable more effective and accurate classification of rice grains. three scenarios are demonstrated in this paper include, cnn, cnn in combination with transfer learning technique, and cnn-lstm deep model. the performance of the mentioned scenarios is compared with the other deep learning models and dictionary learning-based classifiers. the experimental results demonstrate that the proposed algorithm accurately detects different rice varieties with an impressive accuracy rate of over 99.85%, and 99.18% to identify quality for varying combinations of rice varieties with an average accuracy of 99.18%.
کلیدواژه rice classification ,quality detection ,convolutional neural network ,long short-term memory ,transfer learning
آدرس university of mazandaran, faculty of engineering and technology, electronic department, iran, shomal university, computer engineering department, iran
پست الکترونیکی m.r.razavi@outlook.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved