>
Fa   |   Ar   |   En
   تشخیص انجمن در شبکه‌های پیچیده پویا مبتنی بر تعبیه گراف و خوشه‌بندی جمعی  
   
نویسنده محمدپور مجید ,مصطفوی اکبر ,رنجبر وحید
منبع مهندسي برق و مهندسي كامپيوتر ايران - 1402 - دوره : 21 - شماره : 3 - صفحه:141 -157
چکیده    امروزه شبکه‌های پیچیده پویا به یکی از ارکان مهم زندگی بشر تبدیل شده‌اند و تشخیص انجمن در این شبکه‌ها یکی از مهم‌ترین مسائل در تحلیل آنها محسوب می‌شود. در این مقاله یک روش تشخیص انجمن مبتنی بر تعبیه گراف و روش یادگیری جمعی ارائه شده که می‌تواند درجه پیمانه‌ای‌بودن هر انجمن را حداکثر نماید. روش‌های تعبیه گراف یا یادگیری نمایش کم‌بعد از گره‌ها در گراف به علت قابلیت کاربردی گسترده آن در عملکرد شبکه‌های پیچیده پویا مانند تشخیص انجمن در شبکه، بسیار مورد توجه قرار گرفته‌اند. در این مقاله، یک روش تعبیه گراف پویا مبتنی بر یادگیر عمیق پیشنهاد شده که گراف خروجی از مرحله تعبیه گراف را به‌عنوان ورودی به مدل یادگیر جمعی می‌دهد تا با دقت قابل قبولی، انجمن‌ها را در شبکه تشخیص دهد. همچنین یک الگوریتم حریصانه جدید به نام پیوند جمع برای بهینه‌سازی تابع هدف برای مجموعه داده‌های مقیاس بزرگ در زمان بسیار کوتاه ارائه گردیده است. نشان داده شده که پارتیشن توافقی پیشنهادی نسبت به پارتیشن‌های به‌دست‌آمده از کاربرد مستقیم روش‌های خوشه‌بندی جمعی رایج، به ساختارهای خوشه‌ای واقعی نزدیک‌تر است. روش پیشنهادی به‌دلیل استفاده از روش پیش‌پردازش مبتنی بر تعبیه گراف پیشنهادی و همچنین استفاده از روش خوشه‌بندی جمعی، توانسته کارایی مناسبی را در مقایسه با سایر روش‌های رقیب از خود نشان دهد. نتایج تجربی آزمایش‌های انجام‌شده حاکی از برتری روش پیشنهادی در مقایسه با روش‌های رقیب است.
کلیدواژه تعبیه گراف، تشخیص انجمن، درجه پیمانه‌ای، خوشه‌بندی جمعی، شبکه پیچیده، یادگیر عمیق
آدرس دانشگاه یزد, دانشکده مهندسی کامپیوتر, ایران, دانشگاه یزد, دانشکده مهندسی کامپیوتر, ایران, دانشگاه یزد, دانشکده مهندسی کامپیوتر, ایران
پست الکترونیکی vranjbar@yazd.ac.ir
 
   community detection in complex dynamic networks based on graph embedding and clustering ensemble  
   
Authors mohammadpour majid ,mostafavi akbar
Abstract    special conditions of wireless sensor networks, such as energy limitation, make it essential to accelerate the convergence of algorithms in this field, especially in the distributed compressive sensing (dcs) scenarios, which have a complex reconstruction phase. this paper presents a dcs reconstruction algorithm that provides a higher convergence rate. the proposed algorithm is a distributed primal-dual algorithm in a bidirectional incremental cooperation mode where the parameters change with time. the parameters are changed systematically in the convex optimization problems in which the constraint and cooperation functions are strongly convex. the proposed method is supported by simulations, which show the higher performance of the proposed algorithm in terms of convergence rate, even in stricter conditions such as the small number of measurements or the lower degree of sparsity.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved