>
Fa   |   Ar   |   En
   پیش‌بینی مکانی- زمانی تغییرات پوشش گیاهی بر مبنای داده‌های سنجش از دور با استفاده از یادگیری عمیق  
   
نویسنده قره چلو سعید ,زنگنه الهام ,مشایخی هدی
منبع مهندسي برق و مهندسي كامپيوتر ايران - 1401 - دوره : 20 - شماره : 4 - صفحه:311 -318
چکیده    درک و تحلیل تغییرات داده‌های مکانی- زمانی در کاربرد‌های مختلف از جمله انجام اقدامات حفاظت و توسعه منابع طبیعی اهمیت زیادی دارد. در مطالعات گذشته، عمدتاً از فرایند مارکوف و روش‌های مبتنی بر مقایسه جهت پیش‌بینی تغییرات شاخص‌های پوشش گیاهی استفاده گردیده که دقت آنها همچنان جای بهبود دارد. گرچه تحلیل‌های سری زمانی برای پیش‌بینی معدودی از شاخص‌‌ها مورد استفاده قرار گرفته است، اما روشی که این شاخص‌ها را از داده‌های سنجش از دور استخراج کرده و مدل‌سازی توالی آنها را با یادگیری عمیق انجام دهد، به ندرت مشاهده می‌شود. در این مقاله، روشی برای پیش‌بینی تغییرات شاخص‌های گیاهی مبتنی بر یادگیری عمیق ارائه می‌شود. داده‌های پژوهش شامل تصاویر ماهواره‌ای لندست از سال 2000 تا 2018، مربوط به چهار فصل سال در نواحی شمال و شرق شهرستان شاهرود در استان سمنان می‌باشند. گستره زمانی تصاویر استخراج‌شده، امکان پیش‌بینی تغییرات پوشش گیاهی را ممکن می‌سازند. شاخص‌های پوشش گیاهی استخراج‌شده از مجموعه داده، شامل ndvi، rvi و savi هستند. پس از انجام اصلاحات اتمسفری روی تصاویر، شاخص‌های مورد نظر استخراج شده و سپس داده‌ها به سری زمانی تبدیل می‌شوند. نهایتاً مدل‌سازی توالی این داده‌ها توسط شبکه حافظه کوتاه- بلندمدت انجام می‌شود. نتایج حاصل از آزمایش‌ها نشان می‌دهند که شبکه عصبی قادر به پیش‌بینی مقادیر آینده با دقت بالا است. میزان خطای شبکه بدون وجود داده‌های اضافی برای شاخص ndvi برابر 0.03، شاخص savi برابر با 0.02 و شاخص rvi برابر با 0.06 گزارش می‌شود.
کلیدواژه یادگیری عمیق، سری زمانی، سنجش از دور، شاخص پوشش گیاهی، مدل سازی توالی
آدرس دانشگاه صنعتی شاهرود, دانشکده مهندسی عمران, ایران, دانشگاه صنعتی شاهرود, دانشکده مهندسی کامپیوتر, ایران, دانشگاه صنعتی شاهرود, دانشکده مهندسی کامپیوتر, ایران
پست الکترونیکی email: hmashayekhi@shahroodut.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved